Geometry of the 4x4 Square

Notes by Steven H. Cullinane

A Structure—-Endowed Entity

"A guiding principle in modern mathematics is this lesson: Whenever you have to do with a
structure—endowed entity S, try to determine its group of automorphisms, the group of those
element-wise transformations which leave all structural relations undisturbed. You can expect to gain
a deep insight into the constitution of S in this way."

—— Hermann Weyl in Symmetry

Let us apply Weyl's lesson to the following "structure—endowed entity."

What is the order of the resulting group of automorphisms?
First, of course, we must determine exactly what "structural relations" we wish to leave undisturbed.

Trivially, the overall 4x4 structure is left undistubed by any permutation of the sixteen dots. But not all
substructures are left undistubed by an arbitrary permutation. For example, the set of four rows and the
set of four columns are left undisturbed by permutations of rows andDor columns, but not by
permutations of the four 2x2 quadrants.

We may be interested in permutations that preserve the structural relation of adjacency. In this case, it
turns out that the group of symmetries of the four—dimensional hypercube, or tesseract,

is what we are looking for, since it is well-known that adjacency in the hypercube is equivalent to
adjacency in a 4x4 array. The hypercube's symmetry group is of_order 384.


http://www.maths.uwa.edu.au/%7Eschultz/3P5.2000/3P5.20N-Cube.html

We may, however, be interested in structural relations other than adjacency. For instance, we may be
interested in families of subsets of the sixteen dots. It turns out that if we regard the 4x4 array as a
picture of the affine space of four dimensions over the two—element field, a very natural family of
subsets is provided by the 35 partitions of the space into four parallel affine planes —— that is to say,
into the 35 two—dimensional linear subspaces of a corresponding vector space and their cosets under
translations. The illustration below shows these 35 structures.
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Aficionados of T. S. Eliot may, if they like,
call the four—element planes or cosets "quartets.”

For a description of how the 4x4 array can be coordinatized to yield this family of partitions and also a
group of 322,560 permutations (rather than the measly 384 of the hypercube) that leave

affine "structural relations" undisturbed, see_Finite Relativity. Strangely enough, this rather obvious
geometric picture —— that of the linear four—space over the two—-element field as a 4x4 array —— seems
to have been completely overlooked in the refereed literature, except for its occurrence in the "miracle
octad generator" (MOG) devised by R. T. Curtis* in his study of the Mathieu group M,,. Even in that
occurrence, the 4x4 parts of Curtis's 4x6 MOG arrays were neither supplied with coordinates nor,
indeed, explicitly identified as possessing the structure of a finite geometry (although the appropriate
group —— which provides a nice solution to Weyl's problem above —— was described, albeit in a
non—-geometric manner).


http://log24.com/log04/0221.htm

The Curtis MOG is a pairing of 35 partitions of a 4x4 array into four—sets (which turn out, once the array
has been suitably coordinatized as a linear space, to be the cosets, under translation, of the 35
two—dimensional linear subspaces) with the 35 partitions of an eight-set (shown as an array of four
rows and two columns) into two four—sets. This pairing is not arbitrary; it is preserved under the action
of the 244,823,040 permutations of the_large Mathieu group M,, acting on an array of four rows and six
columns. See published descriptions* of the MOG for details.

Within one of the maximal subgroups (a "brick stabilizer") of M,,, each of the 322,560 affine
transformations of the 4x4 array is accompanied by a related M,, action (the identity, if the affine
transformation is a translation) on an associated 4x2 array, or "brick," of the MOG. These group
actions illustrate_the well-known isomorphism (pdf) of the alternating group on eight elements, Ag, with
the general linear group, GL(4,2), on the four—space over the two—element field.

Ol e
e O
. O
O .

One of the 35 pairs in the Curtis MOG

For a description of one way to construct the MOG,
see_Generating the Octad Generator, from which
the following illustration is drawn.
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The Miracle Octad Generator of R. T. Curtis
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http://for.mat.bham.ac.uk/atlas/html/M24.html
http://www.ria.ie/publications/journals/procai/1999/PA99I2/PDF/99201AI.PDF
http://log24.com/theory/DTgentheog2.html

How the MOG Works

The quintuply transitive Mathieu group M24 is the automorphism group of the set of octads, or 8-sets, generated by the
Curtis Miracle Octad Generator (MOG). (See Peter J. Cameron's Geometry of the Mathieu Groups (pdf).)

There are 759 such octads:
(7*2*2*3)+(28*2*4*3)+3 =759,
or, in symbols,
(A*B*C*D)+(E*F*G*H)+1=759.
Where the above numbers come from:

Each octad occurs within a 24-set: an array of 4 rows and 6 columns. This 4x6 array is made up of three 4x2 completely
interchangeable "bricks."

Each brick, considered by itself, is an octad. Hence the "I" value of 3, for the 3 individual bricks.

A non-brick octad is formed by selecting 4 similarly marked locations (all black or all white) within one of the 35 4x2 MOG
pictures, and 4 similarly marked locations (all black, all white, all circles, or all dots) in the corresponding 4x4 MOG picture,
then applying a permutation (possibly the identity) of the three bricks of the resulting 4x6 array.

Apart from the octads that are themselves bricks, the 8 cells that define an octad may occurina4+4+0(or4+0+4o0r0

+ 4 + 4) pattern within the three bricks. or they may occurina4 +2 +2 (or2 + 4 + 2 or 2 + 2 + 4) pattern within the three
bricks.

Inthe 4 + 4 + 0, etc., case, one of the two nonempty bricks in a 4x6 array contains 4 cells (either the four white or the four
black cells) from one of the 7 bricks pictured in the leftmost column of the MOG picture, which can be chosen in 2 ways
(hence "A" and "B"), and the other nonempty brick contains 4 cells (any 4 cells marked alike) from the corresponding picture
in column 6 of the MOG,; these 4 cells can fall within this nonempty brick in exactly 2 ways (hence "C"). Switching the two
nonempty bricks adds no new octads. The third, empty, brick can fall in any of the three brick positions (hence "D").

Inthe 4 + 2 + 2, etc., case, one of the 3 bricks, the "heavy" brick, contains 4 elements of the octad. This can fall within any
of the three brick positions (hence "H"). There are clearly 28 * 2 choices (from the MOG pictures in columns 2 through 5) for
the 4 elements of the heavy brick (hence "E" and "F"). Paired with each of these choices are 4 ways of selecting the "2 + 2"
elements in the other two bricks, based on the sets of 4 like elements in each of the MOG pictures in columns 7 through 10
(hence "G"). Switching the two "2 + 2" bricks adds no new octads.



The illustration below shows the action
of a 23—-cycle from M ,, on a "trio" of octads.

e=sl14017011122019 At left: A 23-(:'-,rc|e (Wlth pOint
marked infinity fixed) as applied
D8+ 1319 to a 4x6 array by R. T. Curtis in
a l20l16l 7 121 5 "A New Combinatorial Approach
to Mz4," Math. Proc. Camb. Phil,

151181100 2 §211 6 | goc, 79 (1976), 25-42.

The 23-cycle, from the
large Mathieu group,
acts on a trio of octads.

The Curtis MOG plays a prominent role in the book_Twelve Sporadic Groups, by_Robert L. Griess,
which discusses some of the groups involved in Griess's Monster.** A picture of a MOG action
appears on_the book's cover. For some other connections between the MOG and the Monster, see the
October 2004 paper_Cross Orbits (pdf), by_Peter Rowley.

For a description of how the 4x4 array also provides a nice picture of the 35 lines in the finite projective
space PG(3,2) (as well as the 35 planes through a point in the finite affine space AG(4,2)), see
Orthogonal Latin Squares as Skew Lines. In fact, the MOG has an ancestor in the literature of finite
projective geometry. A pairing equivalent to that in the MOG was described (though without the
rectangular arrays devised by Curtis) in a paper on the projective space PG(3,2) published in 1910.
See page 72 of G. M. Conwell's "The 3-Space PG(3,2) and Its Group," Ann. of Math. 11 (1910), 60-76.


http://www.amazon.com/exec/obidos/tg/detail/-/3540627782/
http://www.math.lsa.umich.edu/people/faculty/griessR.shtml
http://log24.com/theory/images/TwelveSG.jpg
http://www.lms.ac.uk/jcm/7/lms2003-005/sub/lms2003-005.pdf
http://www.ma.umist.ac.uk/newmaths/research/pure/rowley.html
http://m759.freeservers.com/ortho.html
http://www.genealogy.ams.org/html/id.phtml?id=1486

The relevant result is as follows:

"There exists a bijective correspondence between the 35 lines of PG(3,2) and the 35 unordered triples
in a 7—set such that lines are concurrent if and only if the corresponding triples have exactly one
element in common."

—— Elisabeth Kuijken,_Thesis (ps), March 2003.

Kuijken cites Conwell as the source of this result. The result may be verified by examining the MOG
illustration above in light of the note_Orthogonal Latin Squares as Skew Lines.

For another approach to constructing the MOG that involves the_symplectic generalized guadrangle
known as W(2), see_Picturing the Smallest Projective 3—space.

For a theorem illustrating a nice interplay between affine and projective substructures of the 4x4 array,
see_Map Systems.

It is conceivable that the decomposition strategy sketched in the "Map Systems" note might have some
valuable generalizations.

The affine group in the 4x4 space can be generated by permuting rows, columns, and quadrants. For
an illustration, see the_Diamond 16 Puzzle. For a proof, see_Binary Coordinate Systems. For some

background, see_Diamond Theory and_Galois Geometry.

As noted above, the_4x4 square model lets us visualize the projective space PG(3,2) as well as the
affine space AG(4,2). For_tetrahedral and_pentagonal (pdf) models of PG(3,2), see the work of Burkard
Polster. The following is from an advertisement of a talk by Polster on PG(3,2).

The Smallest Perfect Universe
"After a short introduction to finite geometries, I'll take you on a... guided tour of the smallest perfect
universe —— a complex universe of breathtaking abstract beauty, consisting of only 15 points, 35 lines
and 15 planes —— a space whose overall design incorporates and improves many of the standard
features of the three—dimensional Euclidean space we live in....
Among mathematicians our perfect universe is known as PG(3,2) —— the smallest three—dimensional
projective space. It plays an important role in many core mathematical disciplines such as
combinatorics, group theory, and geometry."

—— Burkard Polster, May 2001

See also_my commentary on a paper by Polster.


http://cage.ugent.be/%7Enick/Theses/ekuijken.ps
http://m759.freeservers.com/ortho.html
http://www.win.tue.nl/%7Eaeb/drg/graphs/GQ22.html
http://log24.com/notes/pages/pic.html
http://m759.freeservers.com/mapsys.html
http://m759.freeservers.com/puzzle.html
http://m759.freeservers.com/coord.html
http://m759.freeservers.com/
http://log24.com/theory/GalG.htm
http://m759.freeservers.com/projectivepoints.html
http://www.maths.monash.edu.au/%7Ebpolster/prospace.html
http://bms.ulb.ac.be/Bulletin/98-2-3.pdf/polster.pdf
http://www.maths.monash.edu.au/%7Ebpolster/
http://www.maths.monash.edu.au/%7Ebpolster/
http://log24.com/theory/Polster.html

Note on Required Background

"There is no royal road to geometry."
—— Saying attributed to Euclid

The reader is not expected to fully understand the above material unless he or she has had
undergraduate instruction in linear algebra, abstract algebra, and modern geometry. The following
references may, however, be helpful:

Books:

Symmetry, by Hermann Weyl

Contemporary Abstract Algebra, by Joseph A. Gallian
Geometry and Symmetry, by Paul B. Yale

Websites:

Groups and Symmetry, by_Phill Schultz.

See especially Part 19, Linear Groups Over Other Fields.

As Schultz demonstrates, the order of the affine group
in the four—dimensional space over the two—element field is
(292" - 1)(2* - 2h)(2* - 29)(2* - 29) =

(16)(16 — 1)(16 — 2)(16 — 4)(16 - 8) =
(16)(15)(14)(12)(8) = 322,560.

Classical Groups, by Peter J. Cameron

Projective and Polar Spaces, by Peter J. Cameron
Finite Geometries (ps), by_Juergen Bierbrauer

An Introduction to Finite Geometry (ps), by_Simeon Ball

Finite Geometry (pdf), by_Chris Godsil
Finite Geometry Web, resource listings by_Alan Offer
Some Sporadic Geometries Related to PG(3.2) (jpg), by_Arnold Neumaier

Sporadic Simple Groups (ps), by_Simon Nickerson


http://www.amazon.com/exec/obidos/tg/detail/-/0691023743/
http://www.amazon.com/exec/obidos/tg/detail/-/0395861799/
http://www.amazon.com/exec/obidos/tg/detail/-/0486657795/
http://www.maths.uwa.edu.au/%7Eschultz/3P5.2000/Table_of_Contents.html
http://www.maths.uwa.edu.au/%7Eschultz/
http://www.maths.uwa.edu.au/%7Eschultz/3P5.2000/3P5.19OtherFields.html
http://www.google.com/search?hl=en&ie=UTF-8&oe=UTF-8&q=16*15*14*12*8&btnG=Google+Search
http://www.maths.qmul.ac.uk/%7Epjc/class_gps/
http://www.maths.qmw.ac.uk/%7Epjc/homepage.html
http://www.maths.qmul.ac.uk/%7Epjc/pps/
http://www.math.mtu.edu/%7Ejbierbra/HOMEZEUGS/finitegeom04.ps
http://www.math.mtu.edu/%7Ejbierbra/
http://www-ma4.upc.es/%7Esimeon/IFG.ps
http://www-ma4.upc.es/%7Esimeon/
http://quoll.uwaterloo.ca/pstuff/fgeom.pdf
http://quoll.uwaterloo.ca/
http://cage.ugent.be/%7Eaoffer/fgw/
http://cage.ugent.be/%7Eaoffer/
http://www.mat.univie.ac.at/%7Eneum/scan/29
http://www.mat.univie.ac.at/%7Eneum/
http://web.mat.bham.ac.uk/S.Nickerson/essay.ps
http://web.mat.bham.ac.uk/S.Nickerson/

25-42. For a more accessible discussion of the MOG, see Sphere Packlngs, Lattlces, and Groups by
Conway and Sloane. For related material on octads, see the discussion of the (extended binary) Golay
code in_The Theory of Error—Correcting Codes by Sloane and MacWilliams.

** Properties of the 4x4 array can play at least a small introductory role in the_amalgam. or

Ivanov=Shpectorov (pdf), approach to some sporadic simple groups. See the following sequence of
readings:

« Inscapes, a 1982 note on picturing a symplectic polarity using 4x4 arrays, and a related 1986
note,_Picturing the Smallest Projective 3—space.

« The Sp(4.2) Generalized Quadrangle (html), by A. E. Brouwer.

« Paper (pdf) by Burkard Polster containing a picture of the symplectic generalized quadrangle
W(2) in pentagonal form, rather than the 4x4 form of (1) above. See also_my commentary on
Polster's paper.

« Some Constructions and Embeddings of the Tilde Geometry (pdf), by Antonio Pasini and
Hendrick Van Maldeghem (a 2002 paper on "the flag transitive connected triple cover of the
unique generalized quadrangle W(2) of order (2,2)"). Pasini and Van Maldeghem describe in
detail how the tilde geometry is related to PG(3,2), AG(4,2), and the geometry of the Curtis
MOG.

* A 1994 AMS research announcement (pdf), by A. A. Ivanov and S. V. Shpectorov, on the role
played by (generalized) tilde geometries in the study of various sporadic simple groups.
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http://www.amazon.com/exec/obidos/tg/detail/-/0387985859/
http://www.amazon.com/exec/obidos/tg/detail/-/0387985859/
http://www.amazon.com/exec/obidos/tg/detail/-/0444851933/
http://www.mfo.de/programme/schedule/2004/21b/OWR_2004_25.pdf
http://www.mfo.de/programme/schedule/2004/21b/OWR_2004_25.pdf
http://m759.freeservers.com/pages/DTinscapes1.html
http://log24.com/notes/pages/pic.html
http://www.win.tue.nl/%7Eaeb/drg/graphs/GQ22.html
http://www.win.tue.nl/%7Eaeb/
http://bms.ulb.ac.be/Bulletin/98-2-3.pdf/polster.pdf
http://log24.com/theory/Polster.html
http://siba2.unile.it/ejournals/issues/1/215/Notematv21n2p1-33.pdf
http://www.ams.org/bull/pre-1996-data/199431-2/ivanov.pdf
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