Steven H. Cullinane
Orthogonality of Latin squares viewed as skewness of lines. Dec. 1978.
Shown below is a way to embed the six order-4 Latin squares that have orthogonal Latin mates in a set of 35 arrays so that orthogonality in the set of arrays corresponds to skewness in the set of 35 lines of $\operatorname{PG}(3,2)$. Each array yields a 3 -set of diagrams that show the lines separating complementary 2 -subsets of $\{0,1,2,3\}$; each diagram is the symmetric difference of the other two. The 3 -sets of diagrams correspond to the lines of $\mathrm{PG}(3,2)$. Two arrays are orthogonal iff their 3 -sets of diagrams are disjoint, i.e. iff the corresponding lines of $\mathrm{PG}(3,2)$ are skew.

This is a new way of viewing orthogonality of Latin squares, quite different from their relationship to projective planes.

PROBLEM: To what extent can this result be generalized?

