Finite Geometry Notes   | Home | Site Map | Author |

Finite Relativity: The Triangular Version

(Continued from 1986)

S. H. Cullinane 
The relativity problem in finite geometry. 
Feb. 20, 1986.

This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.

— H. Weyl, The Classical Groups ,
Princeton Univ. Pr., 1946, p. 16

In finite geometry "points" are often defined as ordered n-tuples of a finite (i.e., Galois) field GF(q). What geometric structures ("frames of reference," in Weyl's terms) are coordinatized by such n-tuples? Weyl's use of "objectively" seems to mean that such structures should have certain objective— i.e., purely geometric— properties invariant under each S.

This note suggests such a frame of reference for the affine 4-space over GF(2), and a class of 322,560 equivalent coordinatizations of the frame.

The frame: A 4×4 array.

The invariant structure:

The following set of 15 partitions of the frame into two 8-sets.

Fifteen partitions of a 4x4 array into two 8-sets

A representative coordinatization:

 

0000  0001  0010  0011
0100  0101  0110  0111
1000  1001  1010  1011
1100  1101  1110  1111

 

The group: The group AGL(4,2) of 322,560 regular affine transformations of the ordered 4-tuples over GF(2).

S. H. Cullinane 
The relativity problem in finite geometry. 
Nov. 22, 2012.

This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.

— H. Weyl, The Classical Groups ,
Princeton Univ. Pr., 1946, p. 16

In finite geometry "points" are often defined as ordered n-tuples of a finite (i.e., Galois) field GF(q). What geometric structures ("frames of reference," in Weyl's terms) are coordinatized by such n-tuples? Weyl's use of "objectively" seems to mean that such structures should have certain objective— i.e., purely geometric— properties invariant under each S.

This note suggests such a frame of reference for the affine 4-space over GF(2), and a class of 322,560 equivalent coordinatizations of the frame.

The frame: An array of 16 congruent equilateral subtriangles that make up a larger equilateral triangle.

The invariant structure:

The following set of 15 partitions of the frame into two 8-sets.


Fifteen partitions of an array of 16 triangles into two 8-sets


A representative coordinatization:

Coordinates for a triangular finite geometry

The group: The group AGL(4,2) of 322,560 regular affine transformations of the ordered 4-tuples over GF(2).

For some background on the triangular version,
see the Square-Triangle Theorem,
noting particularly the linked-to coordinatization picture.