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ON THE FIGURE OF SIX POINTS IN SPACE OF
FOUR DIMENSIONS.

By H. W. RicaMonD, M.A., King's College, Cambridge.

THE history of the development of the idea that light is

thrown on the theorems of projective geometry by the
conception of a geometry of a higher number of dimensions
affords a very striking illustration of Cayley’s mathematical
insight. The valuable and ever increasing series of investi-
gations concerning the synthetic geometry of n dimensions,
which we owe almost entirely to Italian mathematicians, has
its source in Veronese’s memoir, Behandlung der projectivischen
Verhdltnisse der Réume von verschiedenen Dimensionen durch
das Princip des Projicirens und Schneidens, (Math. Ann. X1X.,
1882) ; but, as Gino Loria points out in his adwirable
historical monograph, Il passato e il presente delle principali
teori geometriche, (Memorie d. R. Accad. d. Scienze di Torino,
Series 11. Vol. 38), the value of the method of Veronese had
been clearly grasped by Cayley more than thirty years earlier
and used by him in a paper published in 1846, in Vol. XxXI.
of Crelle’s Journal. (Collected Works, Vol. 1., p. 317).

In comparison with much that has already been effected,
the aim of the present paper is a modest one; viz. to con-
sider a very simple figure in four-dimensional space in more
detail than has apparently yet been done, and than is possible
in the case of the analogous figure in n dimensions ; and to
derive by projection and section certain figures in space or in
a plane ang their properties. It may be said that if n +1 or
more points be taken in a space of n dimensions, and a line
or plane or other locus of the first order determined by each
combination of the points, two, three,...... n at a time, the
nature of the configurations derived from this by projection
or section is fully treated in Veronese’s memoir. Three
points in a plane, or four in space, or n+1 in space of n
dimensions, give us nothing beyond such a system of loci of
the first order ; the smallest number of points in space of n
dimensions which give anything more, or which form a figure
having any properties of its own (other than axiomatic ones) is
n+2. Now from four points in a plane we derive the one-
dimensional theory of involution and harmonic section, and
from five points in space the two-dimensional principle of
homology, each as an intuitive consequence of the funda-
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mental axioms of geometry. What, if anything, can we
infer by similar means from the conception oga figure
formed by six points in space of four dimensions? The result
of the inquiry, though not of the fundamental and indis-
pensable nature of the foregoing cases, is yet sufficiently
remarkable ; we find that a necessary consequence of the
conception is that families of fifteen lines must exist in a plane
which [l)ossess all the long list of properties that have slowly
accumulated round the figure formed by joining six points of
a conic, commonly known as Pascal’s Hexagram. The fifteen
lines do not in general join six points, and it is necessary to
investigate their nature by analytical methods: they prove to
be in most cases of a class already familiar to mathematicians
in connexion with curved loci of the fourth order; and the
discovery of a means of obtaining them by linear methods is
therefore a simplification. Incidentally too we are led to
regard some theorems on quartic curves, cubic surfaces, and
quartic surfaces having fifteen or sixteen nodes, from a new
goint of view, viz. in their connection with the four-dimensional
gure.

There is at present no recognised system of nomenclature
for loci in hypergeometry, the names plane and surface for
example being employed in different senses by different
writers. In what follows 1 shall have to deal almost ex-
clusively with descriptive properties of space of four
dimensions, and shall adopt the usage of Italian mathema-
ticians, Veronese, Segre and others ;—denoting by S, a space
of n dimensions, and, when four-dimensional loci are under
consideration, applying the term a line to an S, the term a
plane to an 8, and the term a space (without specification of
the number of dimensions) to an S,, The names curve and
surface refer respectively to curved loci of one and two
dimensions, and the word variety is confined to curved loci of
three dimensions. Thus hereafter, when analytical methods
are introduced, loci in S, the coordinates of whose points
satisfy one or two or three relations, are respectively varieties,
surfaces, and curves ; but should the relations be all of the
first degree they are respectively spaces, planes and lines.
Elementary properties of S,, such as that two Xlanes have as
a rule only one common point, and that one and only one line
meets three given lines, will be assumed: they are investi-
f)ated in Veroncse’s Fondamenti di Geometria, (Padua, 1891),

art 1L, Book I, pp. 457-500: (German translation by
Schepp, entitled Grundziige der Geometrie etc., Leipzig
1894),
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SecrioN I

On the nature of a Hexastigm.

Let six points denoted by symbols 1, 2, 3, 4, 5, 6, be
chosen at random in a space of four dimensions; excluding
exceptional cases, we assume that no five of them lie in an
S,, and & fortior? that no four are coplanar, no three collinear
and no two coincident. Each pair of these points determines
a line, each set of three a plane, and each set of four a space,
and to the figure thus constituted I give the name Hexastigm,
(following Townsend, Modern Geometry, Dublin, 1863). The
foundation of a Hexastigm is the set of six fundamental
points or vertices, 1, 2, 3, 4, 5, 6 ; it comprises in addition
fifteen lines or edges, 12, 13,......; twenty planes or faces,
123, 124,......; and fifteen spaces 1234, 1235....... Two faces
such as 123, 456, are said to be opposite to each other, and
the edge 12 is said to be opposite to the space 3456 ; and, by
a slight extension of the meaning of the word, three edges
such as 12, 34, 56, are described as three opposite edges of
the Hexastigm.

The section of the Hexastigm by a space, that is to say
the figure formed by those parts of the Hexastigm which lie
in an arbitrarily chosen S, consists of fifteen points, twenty
lines, and fifteen planes, derived respectively from the edges,
faces and spaces of the Hexastigm. ‘Through any one of the
fifteen points, (for example that derived from the edge 12),
pass four of the twenty lines, (viz. those derived from the
faces 123, 124, 125, 126), on each of which lie two more of
the fifteen points, (derived from the edges 13, 14, 15, 16, and
23, 24, 25, 26). Consider now the two tetrahedra of which
these eight points are vertices; corresponding vertices lie on
four concurrent lines, as we have just seen; corresponding
edges meet in six coplanar points, and corresponding faces
in four coplanar lines, and the complete system of fifteen
points, twenty lines and fifteen planes is thus accounted for.
We have in fact obtained, by a method clearly capable of
further development, (which we owe to Prof. Veronese), a
very natural and simple analogue in space of the plane figure
of two perspective triangles and their axis of homology. The

lane sections of the three-dimensional figure formed of the
ines and planes determined by five arbitrarily chosen points
consist of ten lines and ten points, and can be resolved in ten
distinct ways into a pair of perspective triangles and their
axis of homology : the space-sections (if I may be allowed to
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coin a convenient word) of the four-dimensional figure formed
of the lines, planes, and spaces determined by six arbitrarily
chosen points may be resolved in fifteen distinct ways into
two perspective tetrahedra and their plane of bomology. It
may further be pointed out that a plane figure may be derived
from that of the two perspective tetrahedra either by
srojecting it on a plane or by cutting it by a plane: that
erived by the latter method consists of twenty points which
lie by fours on fifteen lines, and may be resolved in twenty
different ways into a set of three perspective triangles and
their three concurrent axes of homology. But before dis-
cussing such matters further it is best to study the nature and
progerties of a Hexastigm in S, more fully. For analogues
i S, see Veronese, Fondamenti di Geometria, Part 11., Book
11, Chap. 1L, pp. 550-561, but specially §2. p. 558: see also
the memoir in Math. Ann. x1X., and, for a different method
of investigation, Whitehead, Universal Algebra, pp. 139-142.
Returning to the consideration of the Hexastigm, we
notice that each pair of opposite faces has in common a single
point, and each edge intersects the opposite space in a single
point. The latter family of fifteen points will be called
diagonal points of the Hexastign, the diagonal point which
lies on the edge 12 being denoted by P,,, and so for the other
edges. A second point Q,, is taken on each edge, viz. that
which with the diagonal point divides the edge harmoni-
cally ; @, will be called the Aarmonic point of the edge 12.
The point common to two opposite faces 123 and 456 is
written indiscriminately P, or P, but is of minor im-
portance. In any selected face of the Hexastigm, for
example the face 135, we have now, besides the triangle 135,
three diagonal points, P, P,, P, and three harmonic points
Q. @51y @, upon its sides 35, 51, 13 respectively ; and also
the point P, where our selected face is intersected by the
opposite face 246. The last point is the intersection of three
lines which join the vertices of the triangle 135 to the
diagonal points of the opposite sides ; and so by a well known
property of the triangle the following four sets of three points
are collinear; Q,, P, P,; Py, Q,, P,; Py, P, Qs Qs

Qs Qs

*"Theorem. The Jifteen diagonal points lie by threes on fifteen
straight lines. For clearly the diagonal points of three
opposite edges of the Hexastigm (such as 12, 34, 56) lie each
of them in the three opposite spaces of the Hexastigm (3456,
5612, 1234) and are therefore collinear. This line is the only
line which intersects cach of the three opposite edges of the
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Hexastigm and will be called a transversal of the Hexastigm:
the three transversals which meet any one edge all meet it in
its diagonal point.

For the sake of realizing clearly the nature of the Hexa-
stigm, its diagonal points, harmonic points, and transversals, it
18 convenient to consider separately such parts of the complete
four-dimensional figure as fall within some chosen three-di-
mensional space. Thus in one of the spaces of the Hexastigm
determined by four vertices 1, 2, 3, 4, are contained a
tetrahedron 1234 whose vertices, edges and faces are vertices,
edges and faces of the Hexastigm; the diagonal points,
harmonic goints, etc. which belong to those edges and faces,
and, in addition, P, the diagonal point of the opposite edge
56. In order to describe the configuration in tl‘x’e simplest
way I allow myself to make use of the language of metrical
geometry, and describe a particular case (from which the
general case may be derived projectively) thus:—under
special circumstances the point Eu is the centre of mean
position of the points 1, 2, 3, 4; the diagonal points P,,, P,,,
P, P, P, P, are the middle points of the edges of the
tetrahedron 1234; the harmonic points are at infinity ; the
centres of the faces of the tetrahedron are the points where
they are met by the opposite faces of the Hexastigm, and the
lines which join the middle points of opposite edges of the
tetrahedron are transversals of the Hexastigm. Hence, by
projection, the following sets of points are in all cases
collinear:—

(1) The vertices 1, 2, and P, Q,,.
2 P, By Py

(3) P, 19 Rs’ Qn‘
(4) Qm Qm Qu'

And the following are coplanar:—
(5) The vertices 1,2, 3, and P, P, P,, @,y @,» Qs
(6) The vertices 1,2, and P, Q,, P,, P,,.
(7) Pm Pm Pw Pw Pu’ Qm Qu'
(® Py Py, P, Qp Qu Qe
9 Quw Qv Qo Qs G0 Qe

As a consequence of (9) we learn that the harmonic points
_of the ten edges which join any five vertices of the Hexastigm
VOL. XXXI. 8
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lie in an S, and that the fifteen harmonic points are the points
of intersection four by four of six spaces. Thus, from the
family of six random points in an S, we have worked round
to a family of six spaces; but it would be equally simple to
develop the figure from six random spaces of an S, and end
with a family of six points. The Hexastigm is therefore
reproduced by the principle of duality, and in fact will be
shewn later to be its own polar reciProcal with respect to a
certain imaginary quadric variety, To state this matter more
explicitly, the principle of duality establishes a correspondence
in the Hexastigm between eacz vertex and the space con-
taining the harmonic points of the ten edges which join the
remaining five vertices; between the harmonic point of any
edge and the opposite space; between the diagonal point P,
and the space containing Q,,, Q.. @ @ Qi Y @i’
between the transversal which meets the edges 12, 34, 56, and
the Xlane containing Q,,, @,, @, ; and so forth.

gain the space which containa the coplanar system of
points (7) and the point P, contains of necessity the following
npine diagonal points and six harmonic points,—

PI!’ 'Pu’ I’l.; Pﬂ’ PM’ P P P“‘ Pu;

Q;p an Qu; Q«a Qan Q“'

To construct this three-dimensional figure, (of which the
Hexastigm contains ten examples), take any three lines in
space and any three others intersecting the former three: the
diagonal points lie at the nine intersections of these lines,
which are thus transversals of the Hexastigm and must also
be generators of a quadric surface: the harmanic points are
now easily determined, since @, is common to the lines
which join P, to P,, P, to P,, P, to P,. It will be observed
that these ten spaces meet every edge of the Hexastigm
either in its diagonal point or its harmonic point: they will
be called cardinal spaces of the Hexastigm, and constitute an
extremely interesting configuration in S,, whether regarded
as part of the Hexastigm or as distinct from it. The principle
of duality explained in the last Faragraph connects these ten
spaces reciprocally with the family of ten points each of which
is common to two opposite faces of the Hexastigm, and each
of which we agreed to denote by either of two symbols 7, or
P,,. That cardinal space whicz contains the harmonic points
of six edges situated in the opposite faces 123, 456 of the
Hexastigm and the diagonal points of the remaining nine
edges will be denoted by the symhol C (123, 456). Kach
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cardinal space contains as we have seen nine diagonal points,
six harmonic points, and six transversals which are generators
of & quadric surface; conversely each diagonal point lies in
six cardinal spaces, each harmonic point in four and each
transversal also in four. Any two cardinal spaces intersect
in a plane,—one of a system of forty-five,—in which lie two
intersecting transversals: thus the two spaces

C (123, 456) and C (124, 356)

intersect in a plane containing the two transversals on which
lie P, P, P, and F,, P, P,. In this plane the points P,,
P, P, wa forin a quadrangle whose opposite sides intersect
in the points P, @, @, The analytical methods of 1II.
will be found of great help in such investigations as this.

Up to this point the only way of describing a particular
transversal of the Hexastigm and distinguisbing it from its
fellows has been to mention the diagonal points through
which it passes or the edges which it weets. The following
considerations suggest a simpler notation. It will be found
that from the fifteen transversals it is possible in six distinct
ways to select a set of five which meet all fifteen edges of the
Hexastigm: call them set a, set b, set ¢, set d, set e, set f;
each transversal enters into two of these sets, and therefore
the symbol ab is suitable as a means of representing that
transversal which belongs both to set a and set . The con-
stitution of the six sets will readily be inferred from the
appended tables ; in the former of which the new symbol for
each transversal is followed by a list of the edges which it
meets ; and in the latter, after each edge is written a list of
the transversals which meet it:—

Table I.

ab | 12, 34, 56 || &c | 16, 24, 35 || ce | 14, 23, 56
ac | 13, 25, 46 || bd | 15, 23, 46 || ¢of | 15, 26, 34
ad | 14, 26, 35 || be | 13, 26, 45 || de | 16, 25, 34
ae | 15, 24, 36 || bF | 14, 25, 36 | df | 13, 24, 56

of | 16, 23, 45 || cd | 12, 36, 45 || ef | 12, 35, 46
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Table II.

12 | ab, cd, ef || 23 | af, bd, ce || 35 | ad, bc, ¢f
13 | ac, be, df || 24 | ae, be, df || 36 | ae, bf, cd
14 | ad, bf, ce || 25 | ac, bf, de || 45 | af, be, cd
15 | ae, bd, of || 26 | ad, be, of || 46 | ac, bd, ¢f
16 | af, bc, de || 34 | ab, cf, de || 56 | ad, ce, df

The first column of table I contains the {ransversals
belonging to set a, and the members of other sets may be
selected without difficulty when necessary. Three trans-
versals which pass through a diagonal point are represented
by symbols such as abd, cd, ef, in which all six letters occur;
and generally two transversals do or do not intersect according
as their representative symbols do not or do possess a letter
in common: in other words two transversals which belong
to the same set do not intersect, and two which do not belong
to the same set must do so. Six transversals which lie in
one of the ten cardinal spaces of the Hexastigm are therefore
denoted by symbols such as bc, ca, ab, ¢f, fd, de; a fact
which suggests a second notation for the cardinal spaces, to
be used concurrently with that already explained, viz. the
symbol C (abe. def) to denote the above space, which would
be written C (145. 236) in the previous system. The
conlnexion between the two notations is shewn in the following
table:

Table III

C (abe.def) = C (145.236) | C(ace.bdf) = C(126.345)
C(abd.cef) = C(136.245) | C(acf.bde) = C(124.356)
C (abe.cdf)= C(146.235) | C (ade.bof )= C(123.456)
C (abf.cde) = C(135.246) | C(adf.bce) = C(125.346)
C(acd.bef) = C (156.234) | C(aef.bed) = C (134 .256)
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[A certain reciprocity (which however is really illusory,
and becomes misleading if pursued too far), will be noticed
in these tables between the symbols a and 1, b and 2, ¢ and
3,d and 4, ¢ and 5, f and 6: thus the transversal ce meets
the edges 14, 23, 56, and reciprocally the edge 35 is met by
tranaversals ad, bc, ef, and so throughout: it does not appear
that this reciprocity can be followed out to any result of value,
but the construction of the foregoing tables is considerably
facilitated by it].

Numerous instances of harmonic section and involution
will be found in the Hexastigm, so many indeed that the
wisest plan appears to be to pass them over for the present,
since after the introduction of the methods of analysis such
properties are far more easily discerned: for the same reason
further investigation of other details is postponed ; but it will
be well, as a conclusion to this part of the subject, briefly to
consider how the Hexastigm may be built up from a different
foundation, viz. the family of ten cardinal spaces. In
section II. when we turn to the contemplation of the nature
of space-sections of the Hexastigm, we shall no longer be
able to regard the family of six random points as the basis of
the figure, for the points of the four-dimensional figure will
be lost: its lines, planes and spaces will bowever persist in the
shape of points, lines and planes in the S, by which the
section is made, and on this account the suggested change
of standpoint from which we view the structure we have
raised becomes desirable. It is necessary to retain both
notations for the cardinal spaces, the 1, 2, 3,...... notation to
shew their relations with the edges and faces of the
Hexastigm, the a, b, c,...... notation to shew their relations
with the transversals ; constant references must therefore be
made to the three tables given above.

Each of the ten cardinal spaces corresponds to one of the
ten ways in which the six letters a, d, ¢, d, ¢, f, or the six
figures 1, 2, 3, 4, 5, 6, can be subdivided into two triads (or
sets of three), as the representative symbols shew. From
either symbol for any one space the symbol for any of the
other nine spaces may be derived by an interchange of two
letters or figures, one from each triad: and deleting the inter-
changed members we obtain a convenient symbol for the
forty-five pairs of cardinal spaces: thus the pair

C (123.456) = C (ade.bcf) and C (135.246) = C (abf.cde)

is represented by either C (13.46) or C (8f.de). The latter
symbol at once informs us that the transversals &f, de are
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common to the two spaces; the former that the points @,
Qe P Py B P, P, lie in each. The six cardinal spaces
which ‘contain " the diagonal point P, (the intersection of
transversals ae, bc, df) fall into three pairs C (13.56), C
(15.36), C (16.35) or C (ae.bc), C (bc.df), C (ae.df); the
remaining four spaces contain the point ¢, and have the
figures 2, 4,in the same triad. On the other hand the
transversal dd, which meets the edges 15, 23, 46, is cut by
two spaces in each of its diagonal points, viz. by the pair
C (23.46)=C Sac.g“ in P,, by the pair (C 15.46)=C
af.ce) in P, and by the pair C (15.23) = C (ac.¢f) in eF,,;
and it lies in the other four cardinal spaces, of which it 18
characteristic that the letters 4, d are members of the same triad.

Three cardinal spaces intersect either in a transversal of
the Hexastigm, through which a fourth space also passes, or
in one of a family of sixty lines which join the diagonal points
of two intersecting edges of the Hexastigm: thus the three
spaces

C (123.456) = C (ade.bcf) ;
C (124.356) = C (acf.bde) ; C (125.846) = C (adf.bce);

intersect in the line joining P, to P, which passes also
through @, For a reason to be justihed later 1 call these
the sixty Pascal lines of the Hexastigm ; the line just quoted
is also common to three planes which contain the following
pairs of transversals, ad and bc, de and cf, eb and fa. We are
thus led to study the figure formed of lines which join the
diagonal points of different edges: if the edges do not in-
tersect, the line is a transversal and contains a third diagonal
point ; if the edges do intersect, the line is a Pascal line of
the Hexastigm and contains a harmonic point. The sixty
Pascal lines fall into six sets of ten lines, which may be called
set 1, set 2,...... set 6, the members of set 1 being the lines
which join each two of the five points P, P,, P,, P,, P,,
the diagonal points of the five edges of the Hexastigm which
meet in the vertex 1. But in space of four dimensions a
figure built up from five points is equally well determined by
the five spaces which contain four of the points, just as in
space of three dimensions a tetrahedron is equally well defined
by its faces or its vertices. The Pascal lines thus lie by
threes in the faces of these figures and by sixes in their
spaces: the{ lie also by threes in the faces of the Hexastigm
aud by twelves in its spaces.

Finally it may be pointed out that not only is the notation
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for various loci absolutely symmetrical, but that it is
legitimate to interchange in any way either two or more of
the symbols 1, 2, 3, 4, 5, 6, or again two or more of the
symbols a, b, c, d, e, f; in consequence of this symmetry it is
only necessary to give a single example of any type of locus
that we discover, since the complete system of similar loci
may be obtained by such interchanges. Any correspondence
between various loci will be shewn by either scheme of
notation just as effectively as though it were explicitly defined
in geometrical language. With regard to the curious re-
ciprocity in the groupings of the two sets of six symbols, all
that is needed in its application to our present purpose is
shewn in tables 1, 11, 111,

Section II

On space-sections of the Hezxastigm, and their projections
on a plane.

In considering the three-dimensional figure composed of
those parts of the Hexastigm which lie in an arbitrary space,
(which for brevity 1 describe as a space-section of the Hexa-
stigm), I shall, as has been already stated, regard as the
foundation of the figure the ten planes which are sections of
the ten cardinal spaces; I shall speak of them as the ten
cardinal planes of the three-dimensional figure. Since the
cardinal spaces of the Hexastigm pass by fours through the
the transversals, the cardinal planes of a space-section in-
tersect by fours in fifteen points, (which f shall call the
principal points), each derived from one transversal. With
each cardinal plane and each principal point will be associated
the same symbol as with the cardinal space or transversal of
which it is the section ; thus, in the a, b, c,......notation, to
each %rincipal point is assigned a symbol ab, ac,......ef, and
to each cardinal plane a symbol such as C (abc.def) in such
a way that the points which lie in this plane are abd, bc, ca, de,
¢f, fd ; moreover these six points, being derived from six lines
which are generators of a quadric surface, must lie on a conic
section. But before attempting to establish Eroperties of the
space-section, we must realize more exactly the configuration
of the ten cardinal planes; as before I shall allow myself to
lapse into the language of metrical geometry when it appears
to me that clearness of description is gained by so doing.

To this end we observe that, in their relations to any
space and opposite edge of the Hexastigm, as for example the
edge 12 and the space 3456, the ten cardinal spaces divide
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themselves into a set of four spaces and another of six. The
former meet the edge 12 in its harmonic point @,,, and have
no other common point; the latter meet the edge 12 in its
diagonal point P,, which is also the intersection of the three
transversals ab, cd, ef, situated in the space 3456 ; and two
of them contain cd and ef, two contain ¢f and ab, and two
contain ab and c¢d: moreover each of the other twelve trans-
versals lies in two out of the set of six cardinal spaces and
two out of the set of four. It follows that, in a space-section
of the Hexastigm, if we select the triangle of principal points
ab, cd, ef, two cardinal planes will be found to pass through
each of 1ts sides. Thus these six planes form a figure to
which, in the special case when ab, cd, ef are at infinity, we
should apply the title parallelepiped, and which we may
describe in other cases by the phrase a projected parallele-
piped. The other twelve principal points lie one on each of
the twelve edges of the parallelepiped ; they lie also two by
two on the edges of the tetrahedron formed by the remaining
four cardinal planes, the principal points which lie on two
opposite edges of the araﬁelepiped being on the same edge
of the tetrabedron. R\'e deduce that the vertices of the
tetrahedron are upon the four diagonals of the parallelepiped.
This arrangement of the ten cardinal planesis a very con-
venient one to bear in mind: not only is it easy to picture
mentally but it lends itself also to the construction of a model
of the cardinal planes and principal points, either simply by
marks on the edges of a rectangular box, or better by means
of a wire framework in the form of the edges of a parallel-
epiped, with silk threads passed through holes bored one in
each edge at its principal point. It will appear that none of
the twelve points need lie on the edges produced, a matter
of no small importance in making such a model. It must
however always be remembered that the cardinal planes form
an absolutely symmetrical system ; that no plane or pair of
planes can possess any descriptive property which is not
possessed equally by every plane or pair of planes of the
system. Fig. 2 is copied from such a model, and may be
described in the following manner:—

Let SP’', SQ', SR', be three concurrent edges of a parallel-
epiped; S8'P, S§'Q, S'R, the opﬁosite edges: O the point of
concurrence of the diagonals PP, QQ', RR', 88'; p, ¢, r, 8,
arbitrary points on these diagonals,—(for compactness it is
best to take them upon OP’', 0Q', OR', OS" respectively).
Then the faces of the parallelepiped and of the tetrahedron
P, ¢, 7, 8 shew the configuration of ten cardinal planes of a
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gpace-section of a Hexastigm in a (projectively) quite general
form; and the principal points are on the edges of the
parallelepiped either at infinity or at the Yoiqts where the
edges of the tetrahedron meet them, the following being one
of the many possible schemes:—

ceon QRand ¢gr; dfon R'Qand gr;
¢f on PS’ and ps; de on SP' and ps;
ea on R'Pand rp; f6 on P'R and rp;
eb on QS’ and ¢s; fa on SQ and gs;
ac on P'Q and pg; bd on QP and pg;

ad on RS’ and rs; bc on SR’ and rs;
besides which there lie at infinity,

ab on SP', PS', QR, RQ'; cd on 8¢, QS', RP', PR’ ;
of on SR, RS', PQ, QP

[Some new facts present themselves to our notice in this
figure. We observe that the points which lie on the sides of
each of the four skew hexagons that we can form of the edges
of the parallelepiped, e.9. PQ RP'QR'P, lie in a cardinal
plane: again we see that the three principal points of three
edges which meet in a point form a triangle whose sides are
parallel to those of the triangle formed by the principal points
of the three opposite edges: these properties however, stated
in their projected form, will be found included in the following
list. One warning also is needed ; fig. 2 is drawn according
to the conventional system of perspective used in mathematical
diagrams; t.e. the eye of the reader is supposed to be in-
definitely remote, and yet to see the figure as of finite size, so
that the diagram is an orthogonal projection of the con-
figuration in space. But the eye being at infinity is situated
in the plane which contains the principal points ab, cd, ef.
Thus a mental picture, called up by fig 2, of a three-
dimensional configuration of lines, dpoints, and planes, is
(projectively) quite general: regarded as a diagram of the
projection of this three-dimensional configuration, fig. 2
represents a special case, since in it the points ad, cd, ¢f have
been so projected as to become collinear).

Properties of a space-section of a Hexastigm.
We proceed to make a list of a few of the more important
properties of the space-sections of a Ilexastigm, illustrating
YuL. XXXI. T
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them by references to the foregoing figure. It will be found
occasionally that the means of arriving at some line or plane
or space in the four-dimensional figure ceases to be available,
and a new construction must be devised. It is established,
as a consequence of our conception of space of four-
dimensions, or of our axioms concerning it, that There erist
in space of three dimensions families of fifteen points which
possess the following properties :—

() With each one of the fifteen points may be associated
one of the fifteen pairs that can be formed with six symbols,
in such a way that any symmetry or correspondence between
certain sets of the points is effectively shewn by symmetry or
correspondence among the associated symbols; an important
consequence of this theorem being that, if we agree to denote
each point by the associated pair of six selected symbols, we
may, by interchange of the six symbols, alter the rep-
resentative symbols of different points of the family without
affecting the truth of any statement of a property possessed
by the points.

Let it be agreed that the fifteen points be called principal
points, and that the letters a, b, ¢, ;: e, /, be chosen as the
six symbols: each of the fiftecn points is denoted one of the
symbols, ab, ac,...... ef.

(B) Six points ab, be, ca, de, ef, fd, are coplanar and lie
on a conic section: there are in all ten such planes, called
cardinal planes, four of which pass through each principal
point.

(v), The intersection of three cardinal planes is either a
principal point, through which a fourth cardinal plane will
also pass, or one of a set of sixty points, called Pascal points:
on the line of intersection of any two cardinal planes lie two
principal points and four Pascal points ; for example the line
SP' in figure 2 passes through two principal points ab and de
and four Pascal points viz. S, P’, and its intersection with
pqr, qrs. Each Pascal point, for example S, is the inter-
section of three lines of intersection of two cardinal planes,
SP', 8Q', SR', which join ab to de, bc to ef, and cd to fa.
Each Pascal point may be described as the intersection of
lines joining opposite vertices of a skew hexagon whose
vertices are abd, be, cd, de, ¢f, fa; and therefore each
corresponds to one of the sixty reversible cyclical arrange-
ments of the symbols a,b,c, de, f.

(8) The Pascal points fall into six sets of ten points, the
members of each set constituting the vertices of a figure
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formed by five planes. The ten points of a set therefore lie
by threes in ten lines and by sixes in the five planes. An
illustration of such a set is furnished by the four points
P, Q, R, 8, of figure 2, and the six points where the lines
PS, Q8, RS, QR, RP, PQ, meet ps, ¢s, rs, gr, rp, pq, re-
sgectively: the tetrahedra PQRS and pgrs are perspective ;
the lines Pp, Qq, Rr, Ss, joining corresponding vertices meet
in O; the six points of intersection of corresponding edges
just mentioned lie in a plane which with the faces of the
tetrahedron PQRS forms the set of five planes referred to.

(¢) The Pascal points lie also by threes on twenty lines
and by twelves in Efteen lanes, (derived respectively from
the faces and spaces of tKe Hexastigm), which form the
figure described at the beginning of I., resoluble in fifteen
ways into a pair of perspective tetrahedra. In figure 2, the
set of planes derived from the spaces of the Hexastigm is
made up of the plane at infinity, the six planes which pass
through two opposite edges of the parallelepiped, and eight
others each containing the principal points of three con-
current edges: of these eight, the four which pass through
the principal points of edges meeting in P, Q, R, S, form one
tetrahedron whose vertices lie on PP', QQ', RR’, S8S’ re-
spectively, and the remaining four form a second tetrahedron
whose vertices lie also on these lines and whose faces are
parallel to those of the former: the two tetrahedra have O as
centre of perspective and the plane at infinity as plane of
homology. The twelve Pascal points which lie at infinity
are intersections of the three lines at infinity of the faces of
the parallelepiped with the faces of pgrs.

(©) Each of the six sets of ten Pascal lines in (38) was
determined by section of the edges of a figure defined by five
diagonal points of the Hexastigm such as 5’,,, P,P,P, P,
the faces of these six figures intersect by threes in the lines
such as Q,, @,. @, and the spaces intersect by twos in the
ﬁlanes similar to that containing Q,, @, Q. @iy Qs Dser

ut we have seen that the harmounic points are determined
fully by the intersection of six spaces; hence, returning to
the space-section of the Hexastigm, we infer that there is a
certain figure of six planes through each of whose edges pass
two faces of the figures (3), and through each of whose
vertices pass three edges of these figures.

The plane figure.
Instead of considering the plane figure derived from the
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space-section of a Hexastigm by projection, we find it rather
more convenient to treat of its reciprocal, that is, a plane
section of the figure derived by the Principle of duality from
that which we have just discussed. The six vertices and ten
cardinal spaces of the Hexastigm being both unavailable, we
look on the fifteen lines derived from the transversals as the
foundation of the plane figure, The reason for describing
the lines and points of the figure by the names of various
mathematicians will appear shortly, if it is not already
recognized.

A necessary cansequence of our conception of space of four
dimensions 1s that there exist in a plane families of fifteen lines
possessing the following properties:—

(o) Each line may be associated with, and denoted by,
one of the fifteen symbols abd, ac,......... ef, (formed by
selecting two out of six symbols a, b, ¢, d, ¢, f, in all possible
ways), in such a manner that the validity of any statement
concerning the lines is unaffected by an interchange of these
six symbols, and any symmetry or correspondence of various
sets of the lines is shewn effectively by their representative
symbols.

(B) Six lines such as abd, bc, ca, de, ef, fd, touch a conic;
there being in all ten such conics, any two of which have twa
of the fifteen lines as common tangents.

(y) Corresponding to the different permutations of the six
letters a, b, ¢, d, e, f, {e.g. acebdf) we may form sixty
hexagons such as ac, ce, €b, bd, df, fa; the three intersections
of opposite sides of any such hexagon are collinear; I call
these lines the sixty Puscal lines.

(8) The sixty Pascal lines fall into six sets of ten lines,
each set forming the well known configuration of ten lines
and ten points, which may be resolved in ten different ways
into a pair of perspective triangles. The ten Pascal lines of
a set thus meet by threes in ten points which I call Kirkman
points. That there is a correspondence between each of the
sixty Pascal lines and one of the sixty Kirkman points which
is a member of the same set, is obvious from the nature of
the configuration ; for any separate one of the ten points of
a set may be taken as a centre of perspective of two triangles,
and their axis of homology is the corresponding Pascal line.

(¢) The Pascal lines also meet by threes in twenty Steiner
points which lie by fours on fifteen Pliicker lines. These
form another well known configuration, the projection of the
intersections of six planes in space, which may be resolved in
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twenty distinot ways into three triangles whose vertices lie
on three concurrent lines, and the three concurrent axes of
homology of each pair.

© V{’hen three Pascal lines meet in a Steiner point their
three corresponding Kirkman points lie on one of twenty
Cayley-Salmon lines, which meet by fours in fifteen Salmon
points, and form a configuration reciprocal to that in (e).

Now these six theorems, which may be obtained without
difficulty from previous results concerning the Hexastigm
and its space-sections, have a very familiar form ; a reference
to the note at the end of Salmon’s Conic Sections shews that,
if a, b, ¢, d, ¢, f, denote six points of a curve of the second
degree, the fifteen lines abd, ac,......¢f, which join each two of
them possess numerous properties included in the above
theorems. It would be extremely rash to assume that the
fifteen lines abd, ac......ef, which we have derived from the
Hexastigm, necessarily join six points of a conic; but it is
clearly advisable to see to what extent their properties
(intuitive consequences of the nature of a simple four-
diwensional figure) are in agreement with those better known
results which in the middle balf of the present century were
accumulated round the celebrated theorem discovered by
Pascal more than two hundred and fifty years ago, and still
known by his name.

The development of the figure now commonly known as
the Pascal Heragram dates from 1828, when Steiner drew
attention to the important fact that, from the same six points
of a conic section, sixty distinct hexagons can be formed,
each with its own Pascal line. During the next fifty years
. the figure formed of these sixty lines aroused wide interest,
Steiner, Pliicker, Hesse, v. Staudt, Schéter, Cayley, Salmon,
Kirkman, and many others applying themselves to the study
of its properties. '}‘o dwell in «{etail on the advances made
by each of these mathematicians is superfluous, since the
results of their labours have been summed up and extended
by Veronese, in a masterly memoir, Nuovi teoremi sull’
Hexagrammum Mysticum, (Atti d. R. Accad. dei Linoet, 1877,
Vol. 1, Series 111, pp. 642-703), which is prefaced by an ex-
cellent historical sketch, with full references to the works of
earlier writers, and contains proofs not only of all previously
known theorems but of a large number of new and
original ones. The names used in (y), (8), (e), () are
adopted from Veronese’s memoir, and the subdivision of the
Pascal lines and Kirkman points in (8) into six sets is the
most important of his original contributions to the theory.
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The results of a thorough investigation of Veronese’s
memoir may be stated as follows ;—If we join in all possible
ways, by lines, planes, and spaces, the diagonal points and
harmonic points of a Hexastigm; take a space-section of the
Sigure so _formed; reciprocate it; and take a plane section of
the reciprocal ; we obtain a plane figure built up from fifteen
lines, coextensive with that built up by Veronese for the special
case when the fifteen lines join tn pairs six points of a conic,
together with proofs (intuitive consequences of the nature of the
JSour-dimensional figure) of all his theorems: (there must of
course be exceptions to 8o sweeping an assertion as this, but
they are so few and so trivial that it seems justifiable to
ignore them).

By far the most important addition to the subject since
the publication of Veronese’s memoir is due to Cremona and
will be referred to later: so far as I am aware nothing has
appeared which renders inadmissible the statement, that, the
extstence tn a plane of other families of fifteen lines, which
possess practically all known properties of the fifteen lines that
Join six points of a conic, i3 a necessary consequence of our
conception of space of four dimensions; or more precisely of
the axiomatic law that in it, lines, planes, and spaces are
determined by two, three, and four points respectively, and
are cut by a space of three dimensions in points, lines, and

lanes. It must be admitted that the later properties of

eronese’s memoir become tedious when considered in detail
and are of less importance than the earlier results: the
properties quoted (a), (8), (v). (3), (€), (§), carry us as far
into the subject of these families of fifteen lines as it seems
advisable to penetrate. Far more important than the ex-
tension of the long list of elementary geometrical results
concerning them is the enquiry as to the nature of these lines
in the general case ; for the discussion of this I call in the aid
of Analytical methods.

The transition from the set of six points in S, to the
fifteen lines in a plane has been accomplished by three
operations, (1) a section, (2) a reciprocation, (3) a section:
but the operations of section, reciprocation and projection are
commutative, if we allow for the fact that a reciprocation
interchanges the other two. Instead of the above process we
may make the Eassage from four to two dimensions by first
reciprocating, then taking a section and finally projecting,
or in many other ways; the initial and final figures being
always the same, but the intermediate ones of quite different
types.
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Secrion III.
Analytical Methods.

Whatever be the number of dimensions of the space we
are considering, the coordinates of its points will be denoted
by letters x, X, and the equations of its points by letters
4, U, with suffixes added ; the capitals being used for fixed,
the small letters for current coordinates.

In a space of four dimensions S,, the equations of any six
points must be connected by one identical linear relation ; in
the case of the vertices of the Hexastigm it was stipulated
that no five were to lie in a space of three dimensions, and
we are therefore at liberty to represent the vertices 1, 2,......6,
bdy equations u,=0, u,=0, ...u,=0, which satisfy the
identity

ututu +u+u+u,=0;
or S(u,)=0; (r=1,2, 3, 4, 5, 6).

The equations which determine any points, lines, planes or
spaces in the Hexastigm now become apparent; the edge
12 is 4, =0, u,=0; the face 123 is u, =0, u,=0, u,=0; and
the space 1234 is u, =0, u,=0, u,=0, u,=0: the diagonal
point P, common to the edge 12 and the space 3456 is
u, +u,=0, and the harmonic point Q,, is therefore u, — u,=0.
The transversal P, P,, P, is u, + u,= 0, u,+ u,=0,u, +u,=0;
and the cardinal space C ?I 23.456) has coordinates

U=y =u,=—u=-u=-—1u. etc etc

As regards coordinates of points (z), we ‘choose them in
the first instance to satisfy the indentity

2(u,x)=0,(r=1,2,38,4,5,6),

and make no further condition: on account of the former
identical relation = (x,)=0, each coordinate z is liable to
be increased by the same quantity, and we can therefore only
expect to obtain relations among the differences of the
coordinates z: for example the space 3456 is =, = z,, the face
456 is 2, =z,=z,, and the edge 56 is z,=z,=z,=1z,: the
transversal and the cardinal space quoted above are represented

by 2, =z,; 2,=z,; ,=2,; and by 2, + 2, + r,=z, + 2, + 2,

respectively. We have perfect right to impose another con-
dition on the coordinates z but at present there is no ad-
vantage gained by doing so.



14 Myr. Rickmond, On the figure of siz poinis

The case is altered when we come to the harmonic points,
which we proved were determined by the intersections of six
spaces, Viz. u,=u,=u =u=u, or 6zx,=2(x,) etc. By
imposing the condition =(z,) =0, the equations of these
spaces become 2, =0, z,=0,...... x,=0; not only is the figure
self-dualistic as stated in I., but it is actually 1ts own polar
reciprocal with respect to the imaginary quadric variety

2(x')=0; or 2(v")=0; (r=1,2,3,4,5,6);
as may be easily verified: the harmonic point of each edge of
the Hexastigm is the pole of the opposite space with respect
to this quadric, and the diagonal point is the pole of the space
which contains the harmonic point of that edge and of each
of the opposite space. Thus, when our coordinates satisfy
the identities S(x,) =0; = (x)=0; = (4,2,)=0; from the
six points #,=0 we work round to the six spaces 2,=0; and
the six spaces would serve equally well as the foundation of
the figure. A very important consequence is that, if we
discuss fully the space-sections of the complete Hexastigm,
we may pass over its projections; for the projections of the
figure derived from six points in S, are merely reciprocals of
the space-sections of the figure derived from six spaces in S,.

The following are the equations, in both systems of

coordinates x and %, of loci connected with the Hexastigm :

2()=0; 2(v,)=0; 2(u,2,)=0; (r=1, 2, 3, 4, 5, 6).
Vertex 1; u=0; xr,=2,=x,=z,=2,:
Edge 12; uy=u,=0; o,=x,=z,=2,:
Face 123 ; u,=u,=u,=0; z,=x,=2z,:
Space 1234 ; u, =u,=u,=u,=0; z,=2z,:
Diagonal point P ; u, +u,=0; &, =z,; r,=2,=z,=2z,:
Harmonic point Q,,; u,=u,; z,=2,=2,=2z,=0.
Transversal line P, P, P,.; u, +u,=u,+ u,=u,+u,=0;
or 2 =2, T,=2; r,=1,:

reciprocal to this is the plane containing Q,,, Q,,, Q..
Cardinal space C(123.456); u,=u,=u,=—u,=—u,=—u,;

or rta,+r, =2, +z,4+7,=0:

reciprocal to this is the point common to the faces 123, 456.
‘he symmetry of the two systems of coordinates u and =
is so perfect that, while the name Hexastigm is retained to



{n space of four dimensions. 145

denote the complete series of loci, ranging between the six
points u,=0 on the one hand and the six spaces z, =0 on the
other, it is clearly desirable to recognize as fully as posaible
the equal claim of the two systems to be regarded as the
basis of the figure. We may describe the two as the six-
oint system and the six-space system respectively, and,
Just as we have derived from the six-point system dyiagonal
points, harmonic points, transversal lines and cardinal spaces,
we derive reciprocal loci from the six-space system, and call
them diagonal spaces, harmonic spaces, transversal planes and
cardinal points. A diagonal space for example contains the
plane common to two spaces of the six-space system and the
Eoint common to the remaining four. Certain loei it will
e seen appear under different names in the two systems ; the
harmonic spaces, for instance, of the six-space system are
identical with the spaces containing four of the six original
points of the six-point system ; but the equations we have
iven will prevent us from overlooking such facts as this.
he symmetry is lost when we take a space-section of the
Hexastigm but reappears in a less perfect form in the two-
dimensional figure derived by projection. The difficulty in
the four-dimensional figure is how to connect in a simple
geometrical manner the two reciprocal systems—(reciprocation
with respect to an imaginary quadric cannot well be used)—
and it would be of great use to us for this purpose if a closer
connexion between the two systems existed.

We have yet to find the equations of the Pascal lines of
the Hexastigm ; but in so doing it is best to kcep in mind
the lines and points they lead to in the plane figure. A
Pascal line in the six-point system was determined by two

diagonal points such as P, P, and its equations are
therefore
—u=u=u;ore,=xr=r1=2+2,-1,=-4%uz

The Pascal lines which join P,,, P,, P, lie in one of the
Flanes 123 of the six-point system, and lead to three Pascal
ines in the plane figure which meet in a Steiner point ; the
Steiner points and Pliicker lines in the plane figure being
derived from the edges and faces of the six-point system.
The Pascal lines and Kirkman points of one of the six sets
which Veronese discovered are derived from the edges and
faces of the figures formed by joining P, P, P,,, P,,, P, (or
a similar set of diagonal points), in all possible ways; the
Pascal line derived from jomning P, and IE:, corresponding to
the Kirkman point derived from the plane P, P, P,

YOL. XXXI. u
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Thus a Veronese set of Pascal lines and Kirkman points is
derived from either five points or five spaces, e.g.

U +u=0;u+u=0;... U+ u=0;
or  z,4+42x=0; 2,+22,=0;.c...  z,+22,=0:

and it is clear that, when three Pascal lines lie in one of the
six-point system, the corresponding planes pass through the
reciprocal edge of the six-space system ; but the Pascal lines
are unfortunately not reciprocals of the planes which lead to
the corresponding Kirkman points.

Corresponding investigations in the six-space system are
taken for granted. 1t seems worth while to digress here for
a moment in order to point out that it is possible by projective
methods to bring six random points in S, to a form in which
the distance of each two is the same. With the vertices of
the Hexastigm arranged thus, the diagonal points bisect the
edges, and the figure acquires many beautiful metrical
properties. Reduction to this form is not possible in Euclidean
space, for the equation = (%,) =0 or =(z,) = 0 must represent
the Absolute.

Space-sections of a four-dimensional figure.

The coordinates = may be applied at once to space-sections,
the sole difference being that they have to satisfy a second
identical lincar relation, viz. the equation of the space by
which the section is made. If U, U,......U, denote the
coordinates of this space, the equations of all loci in the section
may be deduced at once from the foregoing formulae in terms
of six coordinates r,, z,,......x,, connected by two identical
linear relations

2(2)=0; 2(U.x)=0; (r=1, 2,3, 4,5, 6).

But if we wish to use coordinates u, difficulties beset us:
on account of the identity = (U, r,)=0, each of the quantities
u_is liable to be increased by the same multiple of U, and
thus we shall only be able to interpret equations in u’s which
are not altered when % _+X U is substituted for % _: we are
in just the same case as when at the beginning of this 11I. we
saw that only equations in the differences of the coordinates
x were to be expected to arise: as then, we have every right
to simplify our equations, if possible, by assuming that the
quantities % satisfy a new linear identity. When several
equations in u coordinates determine a locus, the space-section

by the space (U, U,,...U,) is found by writing «, + A U, for
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u, in the equations and eliminating A. [The matter is more
easily explained in its reciprocal form, viz. when we are
projecting loci in S, upon an 8, from a centre of projection
whose coordinates are X, X,...X,. Equations in u coor-
dinates here present no difficulty ; but, given a locus defined
by two or more equations in = coordinates, we first write
z,+AX_ for , and eliminate A: this represents a locus
generated by lines which join the point X to each point of the
given locus: we may now if we wish, assume a new relation
among the coordinates x, i.e. specify a particular S, as the
space on which the projection is made; but it is seldom
advisable to do this]. Obviously, in discussing the space
sections of the Hexastigm, we must keep as far as possible
to z coordinates. As has been stated above, on account
of the perfect reciprocity of the Hexastigm, it will not be
necessary to discuss its projectionsinto space of three dimensions;
for all that concerns themn may be obtained by the principle of
duality from a space-section, provided the latter be considered
in its relation goth to the six-point and to the six-space
systems: but first we shall turn our attention to a certain
variety in S, which throws light on the nature of the planes,
lines, and points of a space-section, and shews that they have
already become to some extent familiar to mathematicians.

On Segre’s cubic variety.

Intimately connected with any six-space system in S, is a
certain variety of the third order, some of whose properties,
studied without the aid of analysis, form the subject of a note
by its discoverer, Corrado-Segre, in vol. XXII of the Atw
della R. Accad. delle Scienze di Torino 1887. p. 547. This
variety, which appears to me to possess far more beautiful

roperties than any cubic surface in three-dimensional space,
18 of the fourth class, is rational, has no independent invariant,
has the maximum finite number of double points possible in
a cubic variety, namely ten. When the equations of the six
planes are 8o prepared that their sum is identically zero, the
equation of the variety expresses that the sum of their cubes
vanishes. With our six-space system, x, =0, is associated
the Segre's cubic variety, (to be denoted in what succeeds
by V),

v S(x,)=0; 2(x,)=0; (r=1,2,3,4,5,6,):

the equation may however be also written in ten forms
similar to

‘ (xr +a,) (Is + zl) ('rl + w:) + (2, + a's) (xs+ xc) (z + me) =0..
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The cardinal points (r, =2, =2, =—2,=-2,=~ 1z, etc).
of the six-space system lie on V:, and an attempt to determine
their tangent spaces shews that each is a double point. The
transversal planes, which form a system of fifteen planes
situated by threes in the fifteen diagonal spaces lie on V,, and

are part of it: each diagonal space thus cuts ¥, in three

planes. Now in S, we can draw through any ordi:rary point
of a variety six lines baving four-point contact at the point,
and in the case of Segre’s cubic V,, these lines must lie
wholly on the variety, and must therefore meet each one of
the fifteen diagonal spaces in one of the three transversal
planes contained in it. Reasoning from this we are able to
attach a more definite geometrical significance to the symbols
a, b, ¢, d, e, f of Tables 1, 2, 3, than has hitherto been
possible; viz. that the six lines which pass through any point of
V, and lie wholly on V, are of six distinct types, a, b, ¢, d, ¢, f,
those of type a meet one set of five transversal planes, those
of type & another set, and so on: the symbol ab associated
with the transversal plane 12, 34, 56 in Table 1, shews that
this plane is met by aH lines of the types a and b,

Secrion 1V.
On the Pascal Hexagram.

In order to pass from the transversal lines of a six-point
system to the Kme families of fifteen lines which possess the
properties of Pascal’s Hexagram, it has been said that three
operations are required. One of these is necessarily a re-
ciprocation, but it may be either the first or second or third of
the series. In virtue of ILl., the simplest way of making the
transition is to take the reciprocation first, for this merely
changes the transversal lines of the six-point system into
transversal planes of an equally simple six-space systemn;
projecting a space-section of this family of planes we arrive
at the plane figure desired. The derivation of Pascal’s
Hexagram from the six-space system in this way is the
subject of the present section; we have first to consider space-
sections of the fifteen planes which formed part of Segre’s
cubic variety V, in general. -

Now the section of ¥V, by an arbitrary space is a cubie
surface of quite general type: for Cremona has shewn (Math.
Annalen x11. p. 301) that the equation of a non-singular
cubic surface may be reduced to the form

2(’r')=05 E(J'r)Eos S(Ux)=0; (r=1,2,3,4,5,6).
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in thirty six different ways: see Salmon-Fiedler, p. 403,
section 310. For special positions of the space of section, 7.e.
for special values of U, U,...U,, the cubic surface may
possess singularities; but of such cases I shall consider only
one, viz. when the space of section touches V, at an ordinary
point and the cubic surface therefore has a double point at
the point of contact; Salmon-Fiedler. p. 412, and foot-note,
section 341. The space-sections of the fifteen transversal
planes of the six-space system are a family of fifteen lines
which lie by threes in fifteen planes, and also lie on the cubic
surface ; they are a set of fifteen of the twenty-seven lines of
the surface such as is left when we omit a double-six; Salmon-
Fiedler. p. 401, section 308. Schlifli, Quarterly Journal, vol. 2
p.- 116. In the special case of section by a space which
touches V,, they are the fifteen lines of the surface which do
not go through the nodal point. We thus arrive at a theorem
due in part to Cremona, viz.

The plane systems of lines which possess the properties proved
JSor the lines which join sixz points of a conic are projections of
JSifteen lines of a cui;]ic surface such as are left when we exclude
a double-siz. 1t is necessary to include a statement of the
special case, for this arises when the members of the rejected
double-six coalesce two by two in six lines through the double

oint.
d Mention was made at the end of II. of a memoir by
Cremona: it is to be found in the same volume of the Atti d.
R. Accad. dei Lincei as that of Veronese; pp. 854-874. On
reading Veronese’s manuscript Cremona was led to seek
another basis for the existence of this vast series of theorems,
and found it in the three-dimensional systemn of lines that lie
on a cubic surface having a double point. On such a surface
lie six lines which pass through the nodal point, and are
generators of the tangent cone, and fifteen others, one in the
plane of each pair of the foregoing: by projecting these on a
plane, from the nodal point as centre of projection, Cremona
obtained fifteen lines joining six points of a conic, and, baving
established the fact that these lines lie by threes in fifteen
planes, shewed that all Veronese’s theorems were intuitive
consequences. In conclusion, he observes that the projections
of any fami(liy of fifteen lines which lie by threes in fifteen
planes would possess these ];roperties, and that the lines of a
cubic surface supply examples of such families, but goes no
further, overlooking the fact that Geiser had discussed (Math.
Ann. 1. p. 129) the projections of the lines of a cubic surface,
with valuable and well known consequences. Cremona, then,
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stopped after taking a very important step in the direction of
the simplification of the vast figure which Veronese had con-
structed, in that he shewed how it could be derived, and all
its properties established, from a comparative simple figure
in space: a discussion of the Hexagram from gremona’s
point of view will be found in the T'ransactions of the Cam-
bridge Philosophical Society, vol. xv. p. 207, in which it is
pointed out that the complete figure as developed by Veronese
was the result, save in a few unimportant details, of projecting
the intersections of the two systems of planes analogous
tozr +x,=0.

The ‘method followed in the present paper derives the
plane figure, and establishes its properties, from one of the
simplest possible (descriptive) figures in space of four dim-
ensions, by purely linear methods; it leads us to notice that
other systems of coplanar lines and points lgossess all these
properties, of which systems the Pascal Hexagram is an
extremely special case: and it will be seen that the transition
from four to two dimensions may be made by a different
route with no less interesting results. That the true cause
for the existence of families of coplanar lines and points,
Eossessed of all Veronese’s long category of properties, is to

e found in the figures in S, cannot be doubted; although we
shall find that, as a matter of history, most of these families
have been already discovered, and some of their properties
obtained, by other means, chiefly in connection with the study
of curves and surfaces of the fourth degree. We will now
consider how the above fifteen lines in space lead us, under
special conditions, to Pascal’s Hexagram, and then treat the
most general case of a projection of a space-section of the
fifteen transversal planes of a six-space system in S,

In order to derive from the transversal planes, such as

r+z,=2,+x,=a,+x,=0,

of a system of six spaces z,=0,(r=1, 2, 3, 4, 5, 6,) where
2 (z,) =0, the configuration of lines which join six points of
a conic section, let the S, in which the spaces lie be cut by a
space which touches Segre’s variety V,, =(r°) =0, in some
point I, As explained at the end of I11., six lines lying
wholly on 7V, pass through K, and these are members of six
different families distinguishable by six symbols a, 6, ¢, d, ¢, f;
in such a way that the symbols ab, ac etc., associated with
the transversals in Table 1, shew us which two of the six
lines through K each transversal plane intersects: the first
line in that table associates ab with 12, 34, 56 ; therefore the
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plane quoted above intersects the lines through K which are
of type ¢ and type b. In the space-section by the tangent
space at K, V, is represented by a cubic surface having a
double point at K, and the transversal planes by fifteen lines
on the surface; but the lines of ¥V, which pass through K
Fersist in the space-section as lines, still distinguishable by
etters a, 0, ¢, d, e, f, which lie on the cubic surface, and pass
through its double point; and each of the former fifteen lines
intersects two of the latter according to a scheme shewn
immediately by reference to Table 1.

The analytical formulae are discussed at length in my
paper in the Cambridge Phil. Trans. to which I have referred.
It the coordinates of the point of contact of the space of
section with ¥, be denoted by X, we have the following
system of equations for a three-dimensional cubic surface
endowed with one nodal point K:

Equation of the surface, = (x’)=0; (r=1,2,3,4,5,6):

Coordinates of K, the double point (X ):

And the relations which connect the coordinates and con-
stants are

2(x,)=0; T(X'2,)=0; 2(X,)=0; (X)) =0.

The six lines a, b, ¢, d, ¢, f, which lie on the surface and pass
through K| are generators of the quadric cone X (X,»°)=0;
but it does not appear that the separate equations can be
exhibited in a simple form. The plane through any two, for
example ¢ and e, can be found at once, for it meets the surface
in a third line ce, whose equation is shewn by Table 1 to be

rtzr=r,+r,=2r,+x,=0;

the equation of the plane through this line ce, c, e and K is
therefore

x+zr, z,4+r r i

X +X, X,+%, X +4,

Through each of the fifteen lines ab, ac,...... ef, pass three of
the planes @, + &, =0, sections of the fiftcen diagonal spaces
of the six-space system, according to the scheme shewn in
Table 2; and the intersection of two such planes, e.g.
z,+z,=0 and x, + x,=0, where the former contains ab, cd,
¢f, and the latter af: be, de, ﬁasses through the points of
meeting of ab with de, of bc with ¢f, and of cd witbj?z.
Project this system on a plane from K as centre of pro-
Jection: the lines a, b, ¢, d, e, f, cut the plane in six points of
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a conic, also denoted by a, b, ¢, d, ¢, f, and the lines ab, ac,...
ef project into lines which join each two of the six, and are
therefore naturally still denoted by symbols ab, ac,...ef. The
projection of the line of intersection of the planes z, +x,=0,
z, +z,=0, still contains the intersections of ab with de, of b¢
with ef, of cd with fa, and is a Pascal line of the Hexagram.

As regards the equations of loci in the plane figure, we
may, from the equations of any line (or curve) in the three-
dimensional figure, derive the equation of the plane (or cone)
formed by joining each.point to K, and thus o%tain equations
of a systemn of geometrical loci in space wholly generated ?
lines through K'; practically we do this by writing z, + 2 X,
in Slace of _in the equatious of the lines (or curve) in space,
and eliminating A. The section of this system by any plane
is the projection of the three-dimensional figure on the plane
from K as vertex of projection. As a rule it is not desirable
to specify a particular p[]ane as the plane of section ; yet, as
it is convenient to be able to use the nomenclature of plane
geometry, we alway suppose such a section made. The out-
come of these considerations is that in the plane figure lines
(or curves) are given by one, points by two, homogeneous
equations in six coordinates z, subject to the relations
2(x,)=0, 2(X’x,) =0, and, further, the equations are of
such a form that the substitution of & + \ X for z, does not
alter them. For instance we speak of the equation of the
plane through K and the line ce of the figure in space, found
a short way back, as being the equation of the line ce of the
projected plane figure of Pascal’s (hexagram.

The verification of Veronese’s theorems concerning the
Pascal Hexagram by means of these equations is usually in-
stantaneous and in no case presents any difficulty, but there
is no reason to consider the theoremns in detail. Cremona
realised that the whole series of propositions were in truth
only the relics of the simpler properties of a three-dimensional
figure, and we have gone further in connecting them with
four-dimensional space. To quote the theorems one by one
is wearisome; but to be able to describe the properties of a
set of coplanar lines by the phrase Veronese's properties of
Pascal’s glexagram is 80 convenient for my purpose that some
consideration of the meaning and origin of the phrase was
called for. That all the properties (a) (8) (v) (3) (e) (£) of 11.
do hold when a, b, ¢, d, ¢, f denote six points on a conic will
in future be taken as proved by the foregoing investigation.
It may be said that the equations used by %remona in his
paper on Pascal’s Hexagram are very inconvenient, while



th space of four dimensions. 153

those which we have used, discovered also by Cremona at a
later time but not applied to this subject, are perfectly
symmetrical. [A system of equations in u coordinates may
also be employed for this case, and there is no reason why
each kind of coordinate should not be used both here and in
the general case of projections of space-sections of a Hex-
astigm. For if loci in the 8, be first cut by a space whose
coordinates are U and then projected from a point of this
space whose coordinates are X, the resulting plane loci will
be defined by equations in coordinates z, or u, subject to
conditions

z(U!"‘tr)EO; E(Xru')Eo;
2(X,)=0; (U, X,)=0; 2(U)=0:

the equations being always of such a nature that a sub-
stitution of x, + A X, for z, or of u, +u U, for u, does not
affect them].

r

SecrioN V.
Generalization of these results.
First Method.

In the course of the last section it was observed that the
space-sections of the transversal planes of a six-space system
in S, were a set of lines already familiar to inathematicians in
connexion with surfaces of the third order; they form in the
most general case such a set of lines as remains when from
the twenty-seven lines of the surface we reject a double-six.
The properties of these lines in space which are consequences
of the nature of the Hexastigm, prove to be well known
deductions from this new mode of defining them and need
not detain us; the equations which we obtained for them from
the Hexastigm were obtained by Cremona from three~
dimensional considerations. The plane systems of fitteen
lines which possess the properties &), B, (), (8), (e)y (&)
of LI, and all the rest of Veronese’s properties of Pascal’s
Hexagram, are then projections of certain sets of lines of a
cubic surface and have been discussed by (Yeiser, (Matk. Ann.
I. p. 129).

PWhezl a cubic surface is given, and lines drawn through
a point K to touch the surface, their points of contact lie on
a quadric surface, the polar of K; each line that lies on the
cubic surface meets this quadric in two points and therefore

YUL. XXXI. X
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touches in two distinct points the cone with vertex K that en-
velopes the cubic surface. The projections from centre K of
the lines which lie on a cubic surface are double tangents of the
section of the cone with vertex K which envelopes the surface.
When the cubic surface is a space-section of Segre’s cubic
variety V,, the cone is a space-scction of the cone in S
formed of lines which pass through K and touch V,; if (X))
be the coordinates of K, the equation of the cone is the
discriminant of
Sz, +1X)'=0,

and is in general of the sixth order. If the equation of the
cone be required, a considerable simplification is effected by
imposing the condition = (X *r) =0, upon the coordinates &,
t.e. by projecting upon the polar plane of K. But we may
state at once that, if K is not on the cubic surface, the section
of the enveloping cone is a sextic curve of a particular type,
distinguished by its having six cusps which lie on a conic.
Since the cubic surface has thirty-six double-sixes of lines
upon it, we infer that, from the twenty-seven double tangents
which Pliicker’s equations shew this curve to possess, we
may select thirty-six sets of fifteen lines which possess all
Veronese’s properties of Pascal’s Hexagram. 1 do not know
of any discussion of the properties of this sextic curve; its
interest appears to be due wholly to its relation to the surface
of the third order.

A far more important series of results springs from the
particular case when K lies on the cubic surface. We cannot
now choose the polar plane of K as the plane on which we
project, for it now passes through XK; it is best not to specify
any plane for the purpose. The tangent cone from K is now
of the fourth order, and if, as before (X)) be the coordinates
of K, and (U), those of the space by which the four-
dimensional figure is cut, we have the i{)llowiug system of
equations fur the enveloping cone:—

SIE(X, ) =4 {2 (e} {=(X)2));
S(x)=0; 2(U,x)=0; 2(X,)=0; (U, X)=0;
(X" =0.

In the special case when K lies on the cubic surface, the
section of the cone with vertex K which envelopes the surface
is a curve of the fourth order without singularities, twenty-
seven of whose double tangents are projections from vertex K
of the lines of the cubic surface, the remaining double tangent
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being the intersection of the tangent plane at K with the
plane of the curve. Now the system of double tangents of a

vartic curve has been widely studied, and receives very
thorough treatment from a point of view suited to the present
geometrical investigation in Salmon's Higher Plane Curves.
It is there shewn that the twenty eight double tangents may
be denoted by the pairs of eight symbols a, 6, ¢, d, ¢, £, 9, &;
(Salmon uses 1, 2, 3, 4, 5, 6, 7, 8); but the complete
symmetry of the system is not fully shewn by this notation.
A rule has been given by Cayley, founded on Hesse's in-
veatigations, called the rule of the bifid substitution, which
removes this defect. The simplest of many possible ways of
connecting the notations for the lines of the cubic surface
which we have used and that just explained for double
tangents of the quadric is to denote the double tangent
derived from the tangent plane at K by gk ; those derived by
projection of members of a double six by ag, bg, eg, dg, eg,
J9; ah, bk, ch, dh, ek, fh respectively. The remaining fifteen
double tangents, (which form a set derivable by projection
from the space-section of the transversal planes of a six-space
system) are represented by the same symbols associated with
each in Table . Thus we arrive at a theorem concerning
double tangents of a plane quartic which may be stated in the
following curious form :—

The fifteen double tangents of a plane curve of the fourth
order, denoted in Hesse's Algorithm by symbols formed of pairs
of sic symbols a, b, ¢, d, e, f, possess all the properties of the
Pascal Heragram formed by lines, (naturally represented by the
same symbols), which join each two of six points a, b, c, d, e, f,
of a conic section. That some of these properties should have
been discovered independently is not to be wondered at:
Salmon quotes (p. 234) two scts of six double tangents
studied by Steiner and Hesse, the former set of which the six
ab, be, ca, de, ef, fd, are typical touch a conic, as we saw in
(8); the latter set, ab, bc, cd, de, ef, fa, have their inter-
sections on a line, which we call a Pascal line. We find
ourselves in possession of an immeuse extension of Steiner’s
and Hesse's results, and have also a much clearer view of the
inner principle on which these results rest, than can be
obtained by slowly developing elementary geometrical pro-
perties of the lines.

A remarkable fact, not however without parallel, comes to
light when we seek, by aid of the rule of the bifid substitution,
for a distiuctive geometrical property of such a set of fifteen
double tangents. Selecting any pair of double tangents (ag
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and aA for example), we find five other pairs (b¢, bk ; cg, ck;
dg, dh; eg, eh; fg, fh), such that the eight contacts of any
two of the six pairs lie on a conic: such a system of six pairs
may be chosen in sixty-three ways. Of the remain double
tangents, any fifteen possess all the properties of the Hex-
agram. Thus whereas, in the case of Pascal’s Hexagram or
of the double tangents of the sextic curve above described,
we have to deal with sets of fifteen lines which possess a long
series of properties on account of a quite definite cause, we
here find the fifteen lines joined by a sixteenth, which forms
with them an absolutely symmetrical family, any fifteen of
whose members possess all the properties of the former sets.
Our sense of symmetry alone shews the necessity for con-
sidering sets of sixteen double tangents of the quartic rather
than fifteen ; but the discussion may be postponed. It will
be seen that the statement that the fifteen double tangents of
a tﬁl)mrtic curve ab, ac,...ef, possess all Verouese’s properties
of Pascal's Hexagram, does not include all their properties:
the statement in fact deals which only forty-five of their inter-
sections and ignores the remaining sixty, which are of equal
importance in the case of the quartic curve, but coalesce by
tens in the Hexagram. Ior instance the rule of the bifid
substitution shows that in the case of a quartic curve the points
of intersection of ab with ac, of ad with ae, and of bc with da,
are collinear: the same theorem is nugatory in the Hexagram
and does not hold in the case of the sextic curve.

The relations between the different families of fifteen
double tangents of the sextic or of sixteen double tangents of
the quartic; how far the Pascal lines, Kirkman points, Steiner
points, etc. of different families are common, and so forth,
will be passed over entirely. Between the very special case
of Pascal’s Hexagram and the general quartio (or the above
mentioned sextic) are numerous other speoial cases; for ex-
ample, if the quartic have a node, the properties of the
Hexagram belong to any fifteen of the sixteen double tangents,
and in a modified form to certain sets of lines composed partly
of double tangents and partly of tangents from the node,

Secand Method.

The two operations (section and projection), by means of
which the plane families of lines just considered were derived
from the transversal planes, may be taken in the reverse
order without altering the final result; the intermediate stage,
the figure in three-dimensions through which we pass, will be
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quite different from the former. But, in place of applying
the process of projection followed by that of section to the
six-space system, 1t is more convenient to turn to the re-
ciprocal problem, viz., that of deriving a set of fifteen points
in a plane from the transversal lines of a six-point system by
first taking a sPace-section of the figure and then projecting
on a plane. The resulting family of points will necessarily
ossess properties reciprocal to Veronese's properties of
ascal’s ‘I):[exagram, and will also be necessarily reciprocal
to a family of lines such as we have just been discussing ;
the interest of this second method lies in the intermediate
stage, which is of quite a new character, not in the final
stage, which is bound to be simply reciprocal to that of the
earlier method. One advantage of arranging the two
methods in this manner is that we may follow the two
simultaneously, by taking a space-section of the complete
Hexastigm, (which comprises both a six-space and a six-point
system), and then projecting the complete section on a plane:
the space-section will thus include fifteen lines derived from
the transversal planes of the six-space system, and fifteen
points derived from the transversal lines of the six-point
system. What is the nature of these fifteen points? Do they
form a configuration already known? We have seen that
they lie by sixes in ten cardinal planes, and we have to some
extent discussed their properties under the title principal
points in 1I. A better clue for the purpose of connecting
them with known results is furnished by the variety reciprocal
to V, which is associated with the six-point system in the
same manner that V| is associated with the six-space system.
The reciprocal of a cubic variety with ten double points is of
order 3.2°—2.10=4, and we therefore denote it by V..
In the coordinates u the equation of V,is = (u°) =0, and
therefore in coordinates = the equation is found by eliminating
A and the quantities u, from

e +A=ur; S(k)=0, £(u)=0; (r=1,2,3,4,5,6),

and, if advisable, using = (z,) =0 to simplify the result: the
quantities u, being thus roots of a sextic equation in some
variable 8 lacking terms in 6° and 6°; the quantities x, are
roots of an cquation which differs from a perfect square only
in its two last terms: from this we deduce that

{ZEIN=42(); 2(=)=0;
but many other forms may be given to the result. The
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variety V, is of the fourth order, has each transversal of the
six-point system as a double line and each cardinal space as
a singular tangent space, t.c. is cut by each cardinal space in
a quadric surface taken twice. A space-section of V, is there-
fore a quartic surface which has fifteen double points and
ten singular tangent planes, the principal points and cardinal
planes of the space-section of the six-point system.

Conversely, if a quartic surface have fifteen double points,
it may be shown that it must be a space-section of a quartic
variety such as V,; it does not seem necessary to give the
proof; incidentally we notice some other forms to which the
equation of ¥, may be reduced, such as

{(z,—2) = (2,42, —2,~ &)} +{(£,- 2,)' - (2, + 2, — 2, - 2)'}}
+ {(Ta - xl)' - ('tl tr -z, - xs)’}* )
or again the cquation of V, is the discriminant of
A+, +r,—2)A+r,+2,-2)A+z,+2,-1,)
Atz +zr,-z) (Mt +z,—a) N+, +z, - 2,)

It is not, however, my purpose to develop properties of V,,
except in so far as they throw light on the tamilies of lines
and points we have discovered. \Vhat concerns us at present
is that we have obtained a second quite new way of arriving
at the plane families of lines, or rather the families of points
derived by the principle of duality; in fact we may assert:—

The projections on a plane of the fifteen double points of
a quartic surface form a family of points possessing properties
reciprocal to Veronese’s series of properties of Pascal’'s Hexagram.

Of the two methods the latter is to be preferred ; the fifteen
principal points of a space-section of the six-point system are
determined by ten cardinal planes which form a figure in
s[l)ace quite readily pictured mentally if we conceive the
planes to be disposed as in Figure 2. The method of the
fifteen lines which lie by threes in fifteen planes, as Cremona
expressed it, or of fifteen lines of a cubic surface excluding
a double six, which formed the intermediate stage in the first
method are by no means 8o easy to realize, even after a model
bas been studied. As to the two-dimensional figure there is
nothing to choose: in fact it becomes more and more apparent
that the plane figure must be considered simply as a projection
of a space-figure, and its properties thus derived ; any attempt
to think of the plane figure by itself, purely as a two-dimen-
sional system, entangles us in a maze of elementary theorems
absolutely bewildering in their numbers. The space-figures



in space of four dimensions. 159

are not so complex as to confuse us and can be realized with
a slight effort ; if the four-dimensional figure could be pictured
mentally, to discuss even the space-figures would be super-
fluous. It might be thought that the fact that the first method
depended on a cubic surface and the second on a quartic told
in favour of the former; but even this appears to me to be
untrue, for these quartic surfaces are of particular interest.

An important special case presents itself when the space of
section touches V, at some point K'; for the resulting surface
must then have another node at K or sixteen in all. The
surface is in fact the much-studied Kummer’s surface; not
only are the fifteen nodes ab, ac, ..., ¢f joined by a new node K,
but the ten singular tangent planes are joined by six others
which pass through K, reciprocals of the six lines which were
rroved to pass through each point of Segre’s variety ¥, and
ie on the surface. These six lines were denoted by a, b, ¢, d,
e, f in such a way that a met the five planes ab, ac, ad, ae, af
in the six-space system ; if the six planes which pass through K,
reciprocal to these lines, be here denoted by a, b, ¢, d, ¢ f,
we find ourselves making use of the ordinary notation for
a Kummer’s configuration (see Reye, Geometrie der Lage,
latest edition; or Sturm, Liniengeometrie, Vol. 2) viz.

(1) K, one of the nodal points;
(2) a, b, c,d,e,f the six planes which pass through K;

(3) ab, ac, ..-, ef, the other fifteen points, so named that
ab lies on the planes a and b.

(4) C (abc.def), or simply abe.def, the remaining ten planes,
each containing six of the points (3).

The fifteen points (3) and the ten planes (4) retain all their
previous properties, but also acquire some new ones, e. g. that
ab, ac, ad, ae, af are now coplanar; but any fificen of the
sixteen nodes possess all the properties proved for these fifteen ;
any fifteen, for example, have sixty Pascal points, &e., not,
however, all of them distinct, for it appears that there are in
all only two hundred and forty Pascal points; each in fact
belongs to four different sets of fifteen points. We observe
also that, by taking the vertex of projection at K, the projec-
tions of the fifteen points ab, ac, ..., ¢f are intersections of six
tangents to a conic; and it is clear that, as Kummer's surface
is self-dualistic, we may derive, by cutting its singular planes
by a plane, a set of sixteen lines, which has all the properties
of the lines reciprocal to the projections of its nodes.

Each method thus defines the most general family of lines
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which possess Veronese's properties of the Pascal Hexagram,
or the reciprocal family of points, by means of double tangents
of a sextic curve, or by projection of the nodes of a surface of
the sixth class, (for the class of a quartic with fifteen nodes is 6)
each shows the existence of an important special case of double
tangents of a quartic when the phenomenon of the appearance
of a new member of the system occurs; and finally there is
the case of Pascal’s Hexagram, or its reciprocal, in which the
plane figure is so approached that the new member of the
family is made indeterminate (by choice of a centre of projec-
tion coinciding with it, or some such means). The case of the
quartic curve obviously demands further study as regards the
mutual relations of the Pascal lines, Kirkman points, Steiner
points, &c., &ec., of the different sets of fifteen Enes: the sets
of sixteen double tangents in question are represented either
by gk and ab, ac, ..., ¢f as before, or by one of four symbols
a, b, c, d associated with one of the foure, £, g, h. It is, how-
ever, clear that the second method of passing from four to
two dimensions enables us to discuss the matter in connexion
with the comparatively simple three-dimensional figure instead
of the complex plane figure. For the fifteen nodes and ten
singular planes of a quartic surface which has fifteen nodes
may be investigated by means of a perfectly symmetrical set
of symbols ang equations ; their properties are directly con-
nected with the plane figure on the one hand and with the
simpler four-dimensional figure on the other, and may be
developed with a very slight amount of labour. The effect of
the sixteenth node on these and the symmetry of the system is
better dealt with in space than in the plane; at the same tine
it does not depend upon space of four dimensions; (except
in so far as the symmetrical system of equations for the
quartic with fifteen nodes was suggested by considerations of
an S,); and so does not fall within the range of this paper.

That any tangent plane of a cubic surface, and the twenty-
seven planes through the point of contact and the twenty-seven
lines of the surface should form an absolutely symmetrical set
of planes was once pointed out to me by Professor Cayley as
a remarkable fact which must imply a series of quite unknown
properties of the cubic surface. &'he same interesting fact
appears in Segre’s cubic variety, but I can suggest no
explanation.

King's College,
Cambridge,
Marcieawh, 1899.
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