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1 Abstract 
In this paper**, we attempt to quantify what is meant by the 

terms "degenerate view'*, and its relatives, "characteristic v iew" , 
"visual event", and "general viewing posit ion". We propose that 
the definition of degeneracy is itself degenerate, taking on differing 
meanings at different times. We claim (at least for the case of 
polyhedra) that one can only speak of a two-dimensional stimulus 
as being degenerate with respect to a given heuristic for inverting 
the image function. Additionally, we show that given the finite 
viewing resolution of a two-dimensional retina, in practice the 
concept of a characteristic view is often not characteristic of real 
imagery. Even precisely defined general viewing positions are 
sensitive to camera acuity: any viewpoint ceases to be 
characteristic at some resolution, and non-characteristic views are 
not vanishingly improbable. We provide initial quantitative 
estimates on these probabilities for some simple cases, and relate 
them to a minimal disambiguation distance. It follows that an 
aspect graph is less a discrete graph, and more properly a 
partitioning of the surface of the viewing sphere into " f uzzy " 
regions of non-zero area: an aspect map. This viewpoint is more in 
keeping with recent and proposed work on optimal viewing 
strategies. 

2 Introduction 
Robotic vision systems must both obtain images and analyze 

them. However, a primary characteristic of many realistic imaging 
situations is that the data acquisition is much less costly than the 
subsequent data analysis. In such domains it is therefore 
reasonable to dedicate significant computational effort towards the 
task of calculating an optimal viewing point for the next image 
capture. Defining and obtaining this optimum is necessarily 
probabilistic; it must incorporate an understanding of the limits of 
resolution of the camera, and of the limits of resolution of the 
placing agent The overall goal is to obtain maximal information 
from a sequence of inexact images in inexact placements, while 
minimizing some work function which expresses the relative costs 
of image acquisition and image analysis. Such calculations 
necessarily place a heavy premium on avoiding what are often 
referred to as "degenerate v iews". 

Nevertheless, it is not apparent what makes a view degenerate, 
how such a view is recognized or forecast, or even whether such 
views are rare or commonplace. Thus, the first concern of this 
paper is to define and quantify the meaning of the term 
"degenerate", and to show the varying imaging contexts in which 
it can arise. Secondly, we suggest a representation useful for 
calculating the likelihood of such views (whatever their definition); 
it takes the form of mappings over the viewing sphere. This 
representation extends existing work on aspect graphs by explicitly 

*Thii research was supported in part by ARPA grant #N00039-84-C-0165, by a 
NSF Presidential Young Investigator Award, and by Faculty Development 
Awards from AT&T, Ford Motor Co., and Digital Equipment Corporation. 

** A more detailed version of this paper, Including a survey of multiple 
viewpoint representations, as well as complete references and appendices, 
may be found In [Render and Freudensteln 87] 

incorporating the known limits of visual acuity. It also leads 
directly to methods of associating with each view a probability of 
its being attained, and the placement cost of attaining such a view. 

3 Degenerate Viewpoints in Theory 
If it is to be useful, a representation for the views of a three 

dimensional object or object assembly must give some insight into 
those viewing positions which are less helpful in resolving 
ambiguities of object structure, position, or orientation. We 
present two common views of what such degeneracy is, show that 
they are deficient, and redefine them in ways that are more 
quantifiable. 

3.1 S l ight Movements G i v i n g Dras t ic Changes? 
Perhaps the simplest example of ambiguity is the case of a head-

on view of a cube, which is ideally imaged as a square. Such an 
image has often been noted as giving no information as to the 
three-dimensionality of the object, and has therefore been 
described as a degenerate image (see for example, [Kanade 80; 
Sabbah 82] ). Degeneracy in this context, however, refers to the 
fact that a "s l igh t " change in the viewpoint which generated the 
image would cause a "drast ic" change in the image (sometimes 
called an "image event"). 

This definition (and related descriptions of what makes a 
viewing position general or an image characteristic [Chakravarty 
82]) is inadequate in two ways: 

1. It is vague with respect to the meanings of "s l ight " 
and "drast ic". 

2. It does not encompass all the phenomena that would 
seem to be properly described as examples of 
degeneracy. 

What changes drastically in the cube-as-square image can be 
characterized in many ways: the number of regions change, the 
topology of the image regions is altered, apparent symmetries are 
modified, and ( i f lines are labeled in the Huffman-Clowes manner) 
the junctions are relabelled (cf. [Lavin 74; Thorpe and Shafer 83]). 
Still other derived properties of the image change, too. More 
generally, depending on the means of analysis, this view of the 
cube would be called degenerate if a slight change in viewpoint 
would alter the "qua l i t y " of the ensemble of extracted image 
features used in shape analysis. A rigorous definition of this 
"qua l i t y " change must then include the requirement that a 
qualitative change is one that ultimately affects the derivation of 
those object's "semantic" properties (such as identity, scale, 
rotation, coloring, etc.) considered important by the system. 

The drastic change is therefore a drastic change in 
interpretation, not in image. Therefore the perception of a drastic 
change can vary from system to system. For example, if the 
system distinguishes cubes from spheres by detecting the presence 
or absence of long straight lines, the cube-as-square cannot be 
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considered degenerate. (And, in net , if the cube is the only model 
in the system at al l , no view is ever degenerate.) 

What is hiding behind mis implicit definition of "drast ic" is the 
interpretation equivalence relation; a drastic change is a change of 
interpretation equivalence classes. However, since in many 
systems the interpretation classes are inherited from the feature 
equivalence classes, commonly the drastic change has been 
attributed to image characteristics alone. 

Similarly, the notion of "sl ight movement" is imprecise. What 
is usually implicit in such definition is that there is at least one 
direction in which an arbitrarily small movement of the camera 
causes the drastic change. (Usually the direction is on a line 
perpendicular to an image edge). The meaning of "arbitrarily 
smal l " only appears to make sense when taken in the sense of 
mathematical analysis. That is, the drastic change must occur for 
positive movements of magnitude less than some epsilon, in the 
direction of degeneracy. 

Such a definition would imply that degeneracy can be qualified 
as a matter of varying degree, although this is apparently never 
stated. That is, what can vary from degeneracy to degeneracy is 
the number of possible ("qual i tat ive") drastic changes, and the 
relative number of directions in which such resolutions (or non-
resolutions) occur. For example, the cube-as-square image can 
resolve itself into an image with either two or three regions, wi th 
die two region image possible only for four discrete directions of 
camera movement A l l other directions resolve it into an image 
with three regions, even if some of those regions are vanishingly 
thin. Further, some "degenerate" views sometimes do not resolve 
at al l . For example, the cube imaged as two rectangles remains-
two rectangles for two discrete directions of movement, resolving 
itself into three regions under movement in all other directions. 
The space of allowable degeneracies is apparently very large, and 
perhaps can be quantified in absolute terms as some measure 
defined on the ways in which the view fails to resolve into 
something more "characteristic". 

The converse of the common "smal l gives drastic" definition is 
perhaps easier to implement This converse definition it stated as 
follows: An image is seen from a "general v iewpoint" if there is 
some positive epsilon for which camera movements in any 
direction can be taken without effect on resulting semantic 
analysis. Here, too, the definition is based ultimately on system 
performance; an image can be degenerate to one system but not 
another. Note that this definition of degeneracy need not directly 
appeal to any cansideration of there dimensional models. 

and the (necessarily) heuristic procedures of the system for 
inverting the image projection. Again, this is a system 
performance definition, and an image s degree of degeneracy 
would change as system parameters change. 

It would appear that this definition must be probabilistic. It is 
not hard to conceive of objects or object assemblies in which 
multiple viewpoints give identical images, but for which the 
resolution into a single interpretation takes varying strategic paths 
depending on the differing image features that can appear in the 
second view. (Take as an example a cube with a single 
distinguished face, viewed initially so that only one non-
distinguished face is visible.) The likelihood of taking each path 
can be quantified: the most inclusive measure of an image's 
degeneracy would be then be its probability-labeled search tree. 
Various measure* based on the ful l tree (one of which is, of course, 
is expected depth) could also serve as s measure of degeneracy. 
Under this definition, tree breadth has no strong role: a degenerate 
image can resolve itself into hundreds of images, but as long as 
each new image was interpretable. the original image is no less 
degenerate than the pyramid viewed from below. 

It is interesting to note a paradoxical consequence of this 
systems' view of degeneracy. As a system's power increases due 
to the availability of more sophisticated shape analyzing tools 
(such as when shape from skewed symmetry is used widh shape 
from shadins), more types of ambiguity are possible. Each method 
brings with it a weakness. The implication is that vision systems 
with multiple sources of knowledge must know when to ignore a 
source undergoing degeneracy. This meta-knowledge can be 
explicidy coded, or implicitly handled by means of a flexible 
enough representation that permits "don ' t know much" as a valid 
answer. 

4 Specific Imaging Degeneracies 
Considering now only images of polyhedral objects, it is 

possible to eive a catalogue of image degeneracies. Each is based 
on a specific heuristic for inverting the three-dimension to two-
dimension image function. The list is partial, and omits some 
heuristics that are even more fundamental, such as the generally 
assumed heuristic rules that lines in the image have been caused by 
lines in three-space. ( In this last case, this would imply that any 
planar curve imaged from within its plane would often be 
considered as degenerate, if the system were unable to interpret it 
as other than a linear object) 
4 .1 Ver t ices I m a g e d in the Plane o f Scene Edges 

Apparently the major source of "degenerate v iews" in the 
b l o c b world (see Figure 1), so-called coincidental alignments 
occur when the image of a vertex appears to fall on the image of an 
edge. They confound the basic imaging assumption that three or 
more lines coincident in the image are coincident in the scene. If 
the scene is analyzed using labelling, the labelling w i l l fai l . The 
image is then degenerate because another image is required. In 

Figure 2 

Parallel Scene Lines Imaged 

Figure 1 ■ in their Own Plane 

Classical ''Degenerate" View 

theory, such coincidental alignments have probability zero, since 
the camera must l ie on a specific plane (or more precisely, in the 
infinite intersection of two co-planar half-planes). 

42 Pa ra l l e l Scene L i n e s I m a g e d in T h e i r O w n P lane 
This is one of the degeneracies observed with the cube (see 

Figure 2). It violates the heuristic that colinear in the image 
implies colinear in the scene, a heuristic often not used. Hence, it 
is system-sensitive. In theory, it also has probability zero, 
although the camera placement is somewhat more free than in the 
case of vertex-on-edge. 
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3.2 U n l i k e l y V iews? 
Even this definition of t degenerate viewpoint it incomplete; 

basically it lays that generality is a form of stability. Many stable 
viewpoints ought to be considered degenerate, at least in the sense 
that that they are less likely to allow a system to instantiate a 
proper model than other viewpoints. 

Consider a pyramid with a square base and arbitrary height 
(Customarily, it has equilateral triangles for its sides, but we relax 
mat restriction.) Imaged from many viewpoints from below, its 
image appears to be a type of rhomboid: a ti l t ing square. None of 
these viewpoints is degenerate according to he stability definition 
above, since a slight cnange in viewpoint does not cause a drastic 
change in the image; it merely tilts the rhomboid In fact, there is a 
great deal of viewpoint freedom, and many views appear to yield 
the same semantic result: a partly instantiated pyramid wi th height 
information largely missing, what is most disturbing about such 
views is that they are potentially the most common. For a very flat 
pyramid, such rhomboids appear from nearly half of all viewing 
directions. 

Yet it seems plausible to suggest that these particular views be 
considered at least partially degenerate; in contrast to some other 
views, these images give little information about how to instantiate 
the pyramid's height (They do place weak upper limits on the 
height: the peak is constrained to heights that keep it invisible.) 
Further, if our model base were more complete, we would not be 
able to distinguish such a view from among similar views of a 
triangular wedge wi th square base, or any similarly tapering 
polyhedron wi th a square base, despite the stability of our vantage 

po in t Thus, we may wish to include in our definition of 
degeneracy those viewpoints from which "relatively l i t t le " three-
dimensional information may be obtained, regardless of stability. 

Operationally, this aspect of degeneracy can be quantified as the 
expected number of additional views necessary to disambiguate the 
object; degeneratet view is therefore one that is relatively 
unifororative and w i l l requite mote linages. This number clearly 
depends on the complexity of the model data base, the intelligence 
of the system procedures for determining the "bes t " next view, 



4.3 Co inc iden t Scene L ines Imaged in T h e i r O w n Plane 
This is a special case violation of linear in the image implies 

linear in space. Again, this is system dependent and has 
probability of zero. (Figure 3 illustrates one example of this 
degeneracy while viewing a pyramid.) 

4.4 Perfect Symmetry 
This is an interesting extreme case, and one apparently avoided 

by professional photographers as it appears to flatten relief (we 
provide a straightforward example of perfect symmetry in Figure 
4). It is apparently based on the heuristic that symmetry in the 
image implies symmetry in the scene perpendicular to the line of 
sight. Analogous to what happens when a cube is imaged as two 
congruent rectangles, it is often degenerate since perfectly 
symmetric images lack the cues to depth that broken (skewed) 
symmetries provide. It has a probability of zero of occurring 
ideally, although the camera now has the freedom to move in at 
least one entire plane. 

Figure 4 

Perfect Symmetry 
(View of a Cube) 

5 The Effect of Finite Resolution 
The various viewing points for our camera may be modeled as 

points on a viewing sphere at whose center lies the object of 
interest Therefore, in the ideal case of the cube with infinite 
resolution under orthography (or, for that matter, under 
perspective) there are precisely six viewing directions from which 
we see exactly one face of the cube and no more. Similarly, a 
family of three mutually orthogonal great circles which intersect at 
these six points determine the set of directions from which we 
would see exactly two faces of the cube. Anywhere else on the 
sphere we see three faces (see Figure 5). A point on the sphere 
chosen at random wi l l be a viewpoint imaging three faces with 
probability 1. 

Of course, any real system wi l l have only finite resolution. How 
this resolution is measured, and how repeatable it is, can vary 
depending on application. For the cube, resolution appears to be 
the ability to separate two nearly concurrent parallel lines into their 
separate sources. (Under perspective, the parallel lines would only 
be nearly parallel.) Assuming this resoivability of parallels is 
independent of the line segment lengths (admittedly, this is 
somewhat unrealistic), then the zero probabilities of degeneracy 
become finite. On the viewing sphere, the great circles have 
become bands, and the points of single face viewing have become 
spherical squares (see Figure 6). Their relative areas (and hence 
the probability of degeneracy) are straightforward to compute in 
terms of camera acuity. The less accurate the camera, or the 
farther it is away, or the smaller the object, the larger the likelihood 

that a viewpoint is degenerate. In the extreme, the bands merge, 
and no viewpoint sees a "characteristic" view: the images are 
infinitely degenerate. 

The edges of the bands, however, cannot be sharp. Although the 
bands partition the surface of the viewing sphere, their borders 
represent those viewing directions at which parallel lines are 

first" seen as two lines. Given camera inaccuracy and noise, this 
transition to resoivability cannot be sudden. Depending on the 
camera and the accuracy of the algorithms processing its data, 
repeatability may best be representee! by a fuzzy boundary. Thus 
instead of each point on the sphere having a label, it has a vector of 
(label, likelihood) pairs. Each degeneracy region, then, fades away 
in likelihood as it extends farther from its ideal point or great 
circle. The actual computation of the shape of this probability 

Figure 5 

Cube, at Center of the 
" Viewing Sphere " 

Cube at Center of the Viewing Sphere, 
Degeneracies Delineated 

density depends on the image heuristic used for image function 
inversion, as well as some measure of camera and software 
precision. Nevertheless, the relative size of the integral of 
probability over the partition can give an accurate estimate of the 
likelihood that a particular view, degenerate or not, wi l l be visible 
after a random camera placement 

5.1 C o m m e n t s 
In a sense these aspect maps are property spheres, where the 

property is a type of degeneracy. Computing them demands 
substantial computational time and storage [Besl and Jain 85]; both 
would benefit from a hierarchic, trixel-like approach. Note that 
since the sphere it topologicaly equivalent to the extended plane, 
all such maps can be drawn as planar graphs [Werman, Baugher, 
and Gualtieri 86]. (See Figure 7, where the "standard"aspect 
graph has been augmented to show all possible transitions out of 
degenerate views, as alluded to in [Castore 8 4 ] " * ) . 

6 Minimal Disambiguation Distance 
Transitions between the various regions of the sphere represent 

what [Koenderink and van Doorn 79] term a "visual event . Only 
such a transition is capable of yielding qualitatively new 
information. Thus these transitions clearly represent a useful 
change of viewpoint, which would be worth paying for in terms of 
traveling distance. , 

For the purposes of minimizing the distance traveled in 
obtaining further images, it w i l l be useful to quantify the minimal 
distance we must travel on our viewing sphere, to ensure that we 
w i l l experience a visual event If we reach a characteristic view 
from which an image has not yet been obtained, then we wi l l 
maximize the probability mat any degeneracy wi l l be 

#**m particular, we have added, without ton of plannarity, the direct transitions 
between regions where 1 face it visible, and regions where 3 faces am visible. 
We noticed that in their excellent survey on 3D object recpgnition., [Beil and Jaim 
15, p. 19] did not show such transitions in their aspect graph of a cube, nor did 
their analogues appear in the aspect graph of a tetrahedron, presented by 
Koenderink and van Doom. For an intersting discussion of the relevance of such 
transition! to robotic vision, see the remarks of N. Badler in [Castore 84] 
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Figure 7 

[Planar] Aspect Graph for Cube, 
including 1-face to 3-face Transitions 

disambiguated by the new information. In the case of our viewing 
sphere of a cube, this would mean ensuring that a 3-faced image is 
obtained. 

Using the assumptions of orthographic projection, we can easily 
quantify this minimum distance (for the geometric proof, see 
[Kender and Freudenstein 87]). For a fixed viewing-sphere radius 

of resolution n (i.e. n is an absolute number equal to the number of 
pixels our object w i l l occupy in the image), the distance we must 
travel along the viewing sphere is equal to the product of the length 
of the radius and the arcs in of (1/n) radians. 

In other words, we can quantify the minimal disambiguation 
angle as theta, where 

7 Relative Probabilities for the Cube 
We might, in a given situation, wish to know the probability of 

reaching a particular class of viewpoint, given a random decision 
as to "where to go next." For the case of the cube, we can obtain 
the probabilities of 1, 2, and 3-faced views, by using spherical 
geometry to calculate the relative surface areas on the viewing 
sphere of the 3 regions described above and depicted in figure 5 
(square, rectangular, and triangular patches). 

An analysis of the cube shows that these probabilities are 
generally a function of system resolution : Systems capable of 
higher resolution wi l l generally be less likely to yield 
''uncharacteristic'' views, as one would expect. 

Our results, the complete derivations of which are presented in 
[Kender and Freudenstein 87], are as follows: 

8 Closing Observations and Future Research 
Calculating the number of necessary views and the effort to 

obtain them is a formidable task. In some senses it resembles the 
design of part feeders [Natarajan 86]: that is. given an unknown 
position on the viewing sphere, determine what series of camera 
movements would inevitably lead to a distinguished configuration, 
namely, the acquisition of all relevant semantic information about 
an object or object assembly. Even assuming one knows perfectly 
where one is on the viewing sphere, the determination of even the 
distance to the nearest visual event is complex, given its 

probabilistic nature. Circumstances are easy to construct (for 
example, when the object is too small) where it is actually 
impossible. 

The aspect map can be augmented with other information. It 
can incorporate probabilities such as the likelihood of a given 
gravity-induced preferred orientation, or it can be convolved with a 
placement uncertainty spread function. The spread function can be 
variable, itself incorporating such information as the robotic work 
space or other constraints on placement motion. A search for the 
optimal next view could then also minimize camera placement 
error and also, by related methods, camera placement costs. 

Such algorithms would be particularly valuable if ways exist to 
formally combine the aspect maps of individual objects to create 
the aspect map of an object assembly. Thus, from a few primitives 
and a little knowledge of the robotic placer and its workspace, a 
single representation could direct active sensing. Whether or not 
such a representation is ultimately practical, it has nevertheless 
been helpful in elucidating the meanings of "general viewing 
position and ''degenerate v iew" . 
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